STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
trpStryptophan--tRNA ligase; Catalyzes the attachment of tryptophan to tRNA(Trp). Belongs to the class-I aminoacyl-tRNA synthetase family. (363 aa)    
Predicted Functional Partners:
serS
seryl-tRNA synthetase; Catalyzes the attachment of serine to tRNA(Ser). Is also able to aminoacylate tRNA(Sec) with serine, to form the misacylated tRNA L- seryl-tRNA(Sec), which will be further converted into selenocysteinyl- tRNA(Sec).
  
 
 0.842
metG
methionyl-tRNA synthetase; Identified by match to protein family HMM PF09334; match to protein family HMM TIGR00398.
 
 
 0.814
pheT
phenylalanyl-tRNA synthetase, beta subunit; Identified by match to protein family HMM PF01588; match to protein family HMM PF03147; match to protein family HMM PF03483; match to protein family HMM PF03484; match to protein family HMM TIGR00472; Belongs to the phenylalanyl-tRNA synthetase beta subunit family. Type 1 subfamily.
  
  
 0.789
ileS
isoleucine--tRNA ligase; Catalyzes the attachment of isoleucine to tRNA(Ile). As IleRS can inadvertently accommodate and process structurally similar amino acids such as valine, to avoid such errors it has two additional distinct tRNA(Ile)-dependent editing activities. One activity is designated as 'pretransfer' editing and involves the hydrolysis of activated Val-AMP. The other activity is designated 'posttransfer' editing and involves deacylation of mischarged Val-tRNA(Ile).
  
 
 0.765
fusA
Translation elongation factor G; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF-2 s [...]
 
 
 0.747
argS
arginyl-tRNA synthetase; Identified by match to protein family HMM PF00750; match to protein family HMM PF01406; match to protein family HMM PF03485; match to protein family HMM PF05746; match to protein family HMM TIGR00456.
  
  
 0.740
hisS
histidyl-tRNA synthetase; Identified by match to protein family HMM PF00587; match to protein family HMM PF03129; match to protein family HMM TIGR00442.
  
 
 0.720
EFO29733.1
Alpha/beta hydrolase.
 
    0.696
ychF
GTP-binding protein YchF; ATPase that binds to both the 70S ribosome and the 50S ribosomal subunit in a nucleotide-independent manner.
 
  
 0.689
lepA
GTP-binding protein LepA; Required for accurate and efficient protein synthesis under certain stress conditions. May act as a fidelity factor of the translation reaction, by catalyzing a one-codon backward translocation of tRNAs on improperly translocated ribosomes. Back-translocation proceeds from a post-translocation (POST) complex to a pre- translocation (PRE) complex, thus giving elongation factor G a second chance to translocate the tRNAs correctly. Binds to ribosomes in a GTP- dependent manner.
 
  
 0.670
Your Current Organism:
Roseibium sp. TrichSKD4
NCBI taxonomy Id: 744980
Other names: R. sp. TrichSKD4
Server load: low (28%) [HD]