STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
sucDsuccinyl-CoA synthetase subsunit alpha; Succinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of either ATP or GTP and thus represents the only step of substrate-level phosphorylation in the TCA. The alpha subunit of the enzyme binds the substrates coenzyme A and phosphate, while succinate binding and nucleotide specificity is provided by the beta subunit. (293 aa)    
Predicted Functional Partners:
sucC
malate--CoA ligase subunit beta; Succinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of either ATP or GTP and thus represents the only step of substrate-level phosphorylation in the TCA. The beta subunit provides nucleotide specificity of the enzyme and binds the substrate succinate, while the binding sites for coenzyme A and phosphate are found in the alpha subunit.
 0.999
AHE96391.1
succinate--CoA ligase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 0.999
AHE96526.1
Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.990
AHE95995.1
Fumarate reductase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.978
AHE95667.1
Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the succinate dehydrogenase/fumarate reductase iron-sulfur protein family.
 
 0.975
nuoC
NADH-quinone oxidoreductase subunit C; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; In the C-terminal section; belongs to the complex I 49 kDa subunit family.
  
 
 0.969
nuoC-2
NADH-quinone oxidoreductase subunit C; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; In the C-terminal section; belongs to the complex I 49 kDa subunit family.
  
 
 0.969
AHE95759.1
Fumarate reductase; Derived by automated computational analysis using gene prediction method: Protein Homology.
     
  0.900
AHE95783.1
NADH oxidase; Derived by automated computational analysis using gene prediction method: Protein Homology.
     
  0.900
AHE96698.1
Dimethylsulfoxide reductase; Derived by automated computational analysis using gene prediction method: Protein Homology.
     
  0.900
Your Current Organism:
Thermocrinis ruber
NCBI taxonomy Id: 75906
Other names: DSM 23557, T. ruber, strain OC 1/4, strain OC 14/7/2
Server load: low (26%) [HD]