STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
AFL74399.1Lysophospholipase. (360 aa)    
Predicted Functional Partners:
AFL73156.1
NADH:ubiquinone oxidoreductase, NADH-binding (51 kD) subunit; PFAM: NADH-ubiquinone oxidoreductase-F iron-sulfur binding region; Respiratory-chain NADH dehydrogenase 24 Kd subunit; Respiratory-chain NADH dehydrogenase 51 Kd subunit; SLBB domain.
   
 
 0.980
AFL73771.1
PFAM: Phosphopantetheine attachment site; Acyltransferase; AMP-binding enzyme; TIGRFAM: 1-acyl-sn-glycerol-3-phosphate acyltransferases.
  
 
 0.879
AFL75753.1
NADH-quinone oxidoreductase, F subunit; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Belongs to the complex I 51 kDa subunit family.
   
 
 0.833
AFL75754.1
NADH-quinone oxidoreductase, chain G; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I 75 kDa subunit family.
   
 
 0.828
AFL73158.1
NADH:ubiquinone oxidoreductase chain G-like protein; PFAM: 2Fe-2S iron-sulfur cluster binding domain; NADH-ubiquinone oxidoreductase-G iron-sulfur binding region; 4Fe-4S binding domain.
   
 
 0.820
AFL73024.1
AMP-forming long-chain acyl-CoA synthetase; PFAM: AMP-binding enzyme.
    
 0.805
AFL75598.1
AMP-forming long-chain acyl-CoA synthetase; PFAM: AMP-binding enzyme.
    
 0.805
nuoH
NADH:ubiquinone oxidoreductase subunit 1 (chain H); NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone.
    
   0.788
AFL73089.1
PFAM: Respiratory-chain NADH dehydrogenase, 49 Kd subunit; Belongs to the complex I 49 kDa subunit family.
   
 
 0.787
nuoD
NADH dehydrogenase subunit D; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 49 kDa subunit family.
   
 
 0.787
Your Current Organism:
Thiocystis violascens
NCBI taxonomy Id: 765911
Other names: T. violascens DSM 198, Thiocystis violascens DSM 198, Thiocystis violascens str. DSM 198, Thiocystis violascens strain DSM 198
Server load: low (18%) [HD]