node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
EHO15663.1 | dinB | HMPREF9623_01984 | HMPREF9623_01144 | Hypothetical protein; Belongs to the peptidase S24 family. | Hypothetical protein; Poorly processive, error-prone DNA polymerase involved in untargeted mutagenesis. Copies undamaged DNA at stalled replication forks, which arise in vivo from mismatched or misaligned primer ends. These misaligned primers can be extended by PolIV. Exhibits no 3'-5' exonuclease (proofreading) activity. May be involved in translesional synthesis, in conjunction with the beta clamp from PolIII. | 0.803 |
EHO15663.1 | recA | HMPREF9623_01984 | HMPREF9623_01412 | Hypothetical protein; Belongs to the peptidase S24 family. | Protein recA; Can catalyze the hydrolysis of ATP in the presence of single- stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage; Belongs to the RecA family. | 0.918 |
EHO15844.1 | dinB | HMPREF9623_01755 | HMPREF9623_01144 | Repressor LexA; Represses a number of genes involved in the response to DNA damage (SOS response). | Hypothetical protein; Poorly processive, error-prone DNA polymerase involved in untargeted mutagenesis. Copies undamaged DNA at stalled replication forks, which arise in vivo from mismatched or misaligned primer ends. These misaligned primers can be extended by PolIV. Exhibits no 3'-5' exonuclease (proofreading) activity. May be involved in translesional synthesis, in conjunction with the beta clamp from PolIII. | 0.811 |
EHO15844.1 | recA | HMPREF9623_01755 | HMPREF9623_01412 | Repressor LexA; Represses a number of genes involved in the response to DNA damage (SOS response). | Protein recA; Can catalyze the hydrolysis of ATP in the presence of single- stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage; Belongs to the RecA family. | 0.918 |
EHO17528.1 | EHO18003.1 | HMPREF9623_01127 | HMPREF9623_00187 | DNA polymerase III, beta subunit; Confers DNA tethering and processivity to DNA polymerases and other proteins. Acts as a clamp, forming a ring around DNA (a reaction catalyzed by the clamp-loading complex) which diffuses in an ATP- independent manner freely and bidirectionally along dsDNA. Initially characterized for its ability to contact the catalytic subunit of DNA polymerase III (Pol III), a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria; Pol III exhibits 3'-5' exonuclease proofreading activity. The beta chain is required for initiation of [...] | ATP-dependent DNA helicase PcrA. | 0.869 |
EHO17528.1 | dinB | HMPREF9623_01127 | HMPREF9623_01144 | DNA polymerase III, beta subunit; Confers DNA tethering and processivity to DNA polymerases and other proteins. Acts as a clamp, forming a ring around DNA (a reaction catalyzed by the clamp-loading complex) which diffuses in an ATP- independent manner freely and bidirectionally along dsDNA. Initially characterized for its ability to contact the catalytic subunit of DNA polymerase III (Pol III), a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria; Pol III exhibits 3'-5' exonuclease proofreading activity. The beta chain is required for initiation of [...] | Hypothetical protein; Poorly processive, error-prone DNA polymerase involved in untargeted mutagenesis. Copies undamaged DNA at stalled replication forks, which arise in vivo from mismatched or misaligned primer ends. These misaligned primers can be extended by PolIV. Exhibits no 3'-5' exonuclease (proofreading) activity. May be involved in translesional synthesis, in conjunction with the beta clamp from PolIII. | 0.998 |
EHO17528.1 | polA | HMPREF9623_01127 | HMPREF9623_00065 | DNA polymerase III, beta subunit; Confers DNA tethering and processivity to DNA polymerases and other proteins. Acts as a clamp, forming a ring around DNA (a reaction catalyzed by the clamp-loading complex) which diffuses in an ATP- independent manner freely and bidirectionally along dsDNA. Initially characterized for its ability to contact the catalytic subunit of DNA polymerase III (Pol III), a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria; Pol III exhibits 3'-5' exonuclease proofreading activity. The beta chain is required for initiation of [...] | DNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 5'-3' exonuclease activity. | 0.999 |
EHO17528.1 | recA | HMPREF9623_01127 | HMPREF9623_01412 | DNA polymerase III, beta subunit; Confers DNA tethering and processivity to DNA polymerases and other proteins. Acts as a clamp, forming a ring around DNA (a reaction catalyzed by the clamp-loading complex) which diffuses in an ATP- independent manner freely and bidirectionally along dsDNA. Initially characterized for its ability to contact the catalytic subunit of DNA polymerase III (Pol III), a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria; Pol III exhibits 3'-5' exonuclease proofreading activity. The beta chain is required for initiation of [...] | Protein recA; Can catalyze the hydrolysis of ATP in the presence of single- stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage; Belongs to the RecA family. | 0.903 |
EHO18003.1 | EHO17528.1 | HMPREF9623_00187 | HMPREF9623_01127 | ATP-dependent DNA helicase PcrA. | DNA polymerase III, beta subunit; Confers DNA tethering and processivity to DNA polymerases and other proteins. Acts as a clamp, forming a ring around DNA (a reaction catalyzed by the clamp-loading complex) which diffuses in an ATP- independent manner freely and bidirectionally along dsDNA. Initially characterized for its ability to contact the catalytic subunit of DNA polymerase III (Pol III), a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria; Pol III exhibits 3'-5' exonuclease proofreading activity. The beta chain is required for initiation of [...] | 0.869 |
EHO18003.1 | polA | HMPREF9623_00187 | HMPREF9623_00065 | ATP-dependent DNA helicase PcrA. | DNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 5'-3' exonuclease activity. | 0.774 |
EHO18003.1 | recA | HMPREF9623_00187 | HMPREF9623_01412 | ATP-dependent DNA helicase PcrA. | Protein recA; Can catalyze the hydrolysis of ATP in the presence of single- stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage; Belongs to the RecA family. | 0.843 |
EHO18088.1 | recA | HMPREF9623_00272 | HMPREF9623_01412 | Competence/damage-inducible protein CinA domain; Belongs to the CinA family. | Protein recA; Can catalyze the hydrolysis of ATP in the presence of single- stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage; Belongs to the RecA family. | 0.827 |
EHO18580.1 | dinB | HMPREF9623_00048 | HMPREF9623_01144 | Pyruvate:ferredoxin (flavodoxin) oxidoreductase. | Hypothetical protein; Poorly processive, error-prone DNA polymerase involved in untargeted mutagenesis. Copies undamaged DNA at stalled replication forks, which arise in vivo from mismatched or misaligned primer ends. These misaligned primers can be extended by PolIV. Exhibits no 3'-5' exonuclease (proofreading) activity. May be involved in translesional synthesis, in conjunction with the beta clamp from PolIII. | 0.984 |
EHO18580.1 | polA | HMPREF9623_00048 | HMPREF9623_00065 | Pyruvate:ferredoxin (flavodoxin) oxidoreductase. | DNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 5'-3' exonuclease activity. | 0.411 |
EHO18580.1 | recA | HMPREF9623_00048 | HMPREF9623_01412 | Pyruvate:ferredoxin (flavodoxin) oxidoreductase. | Protein recA; Can catalyze the hydrolysis of ATP in the presence of single- stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage; Belongs to the RecA family. | 0.865 |
dinB | EHO15663.1 | HMPREF9623_01144 | HMPREF9623_01984 | Hypothetical protein; Poorly processive, error-prone DNA polymerase involved in untargeted mutagenesis. Copies undamaged DNA at stalled replication forks, which arise in vivo from mismatched or misaligned primer ends. These misaligned primers can be extended by PolIV. Exhibits no 3'-5' exonuclease (proofreading) activity. May be involved in translesional synthesis, in conjunction with the beta clamp from PolIII. | Hypothetical protein; Belongs to the peptidase S24 family. | 0.803 |
dinB | EHO15844.1 | HMPREF9623_01144 | HMPREF9623_01755 | Hypothetical protein; Poorly processive, error-prone DNA polymerase involved in untargeted mutagenesis. Copies undamaged DNA at stalled replication forks, which arise in vivo from mismatched or misaligned primer ends. These misaligned primers can be extended by PolIV. Exhibits no 3'-5' exonuclease (proofreading) activity. May be involved in translesional synthesis, in conjunction with the beta clamp from PolIII. | Repressor LexA; Represses a number of genes involved in the response to DNA damage (SOS response). | 0.811 |
dinB | EHO17528.1 | HMPREF9623_01144 | HMPREF9623_01127 | Hypothetical protein; Poorly processive, error-prone DNA polymerase involved in untargeted mutagenesis. Copies undamaged DNA at stalled replication forks, which arise in vivo from mismatched or misaligned primer ends. These misaligned primers can be extended by PolIV. Exhibits no 3'-5' exonuclease (proofreading) activity. May be involved in translesional synthesis, in conjunction with the beta clamp from PolIII. | DNA polymerase III, beta subunit; Confers DNA tethering and processivity to DNA polymerases and other proteins. Acts as a clamp, forming a ring around DNA (a reaction catalyzed by the clamp-loading complex) which diffuses in an ATP- independent manner freely and bidirectionally along dsDNA. Initially characterized for its ability to contact the catalytic subunit of DNA polymerase III (Pol III), a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria; Pol III exhibits 3'-5' exonuclease proofreading activity. The beta chain is required for initiation of [...] | 0.998 |
dinB | EHO18580.1 | HMPREF9623_01144 | HMPREF9623_00048 | Hypothetical protein; Poorly processive, error-prone DNA polymerase involved in untargeted mutagenesis. Copies undamaged DNA at stalled replication forks, which arise in vivo from mismatched or misaligned primer ends. These misaligned primers can be extended by PolIV. Exhibits no 3'-5' exonuclease (proofreading) activity. May be involved in translesional synthesis, in conjunction with the beta clamp from PolIII. | Pyruvate:ferredoxin (flavodoxin) oxidoreductase. | 0.984 |
dinB | lexA | HMPREF9623_01144 | HMPREF9623_00301 | Hypothetical protein; Poorly processive, error-prone DNA polymerase involved in untargeted mutagenesis. Copies undamaged DNA at stalled replication forks, which arise in vivo from mismatched or misaligned primer ends. These misaligned primers can be extended by PolIV. Exhibits no 3'-5' exonuclease (proofreading) activity. May be involved in translesional synthesis, in conjunction with the beta clamp from PolIII. | Repressor LexA; Represses a number of genes involved in the response to DNA damage (SOS response), including recA and lexA. In the presence of single-stranded DNA, RecA interacts with LexA causing an autocatalytic cleavage which disrupts the DNA-binding part of LexA, leading to derepression of the SOS regulon and eventually DNA repair. | 0.806 |