STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
BC332_32773NAD(P)H-quinone oxidoreductase subunit 1, chloroplastic. (363 aa)    
Predicted Functional Partners:
BC332_34707
NAD(P)H-quinone oxidoreductase subunit 3, chloroplastic.
 
 0.995
BC332_29544
NADH dehydrogenase [ubiquinone] iron-sulfur protein 1, mitochondrial; Belongs to the complex I 75 kDa subunit family.
  
 0.988
BC332_05924
NADH dehydrogenase [ubiquinone] flavoprotein 1, mitochondrial; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain.
  
 0.988
ndhI
NAD(P)H-quinone oxidoreductase subunit I, chloroplastic; NDH shuttles electrons from NAD(P)H:plastoquinone, via FMN and iron-sulfur (Fe-S) centers, to quinones in the photosynthetic chain and possibly in a chloroplast respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Belongs to the complex I 23 kDa subunit family.
 
 0.982
BC332_00556
NAD(P)H-quinone oxidoreductase subunit I, chloroplastic; NDH shuttles electrons from NAD(P)H:plastoquinone, via FMN and iron-sulfur (Fe-S) centers, to quinones in the photosynthetic chain and possibly in a chloroplast respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Belongs to the complex I 23 kDa subunit family.
 
 0.982
BC332_32819
NADH-ubiquinone oxidoreductase chain 3; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
 
 0.979
BC332_06907
CCHC-type domain-containing protein.
  
 0.973
BC332_07173
NADH dehydrogenase [ubiquinone] flavoprotein 2, mitochondrial.
  
 0.973
BC332_11501
Proton_antipo_M domain-containing protein.
 
 0.971
ndhJ
NAD(P)H-quinone oxidoreductase subunit J, chloroplastic; NDH shuttles electrons from NAD(P)H:plastoquinone, via FMN and iron-sulfur (Fe-S) centers, to quinones in the photosynthetic chain and possibly in a chloroplast respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient.
 
 0.956
Your Current Organism:
Capsicum chinense
NCBI taxonomy Id: 80379
Other names: C. chinense, Capsicum chinense Jacq., Scotch bonnet, bonnet pepper, habanero, piri piri, rocotillo
Server load: low (16%) [HD]