STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ilvGAcetolactate synthase isozyme II large subunit. (548 aa)    
Predicted Functional Partners:
ilvH
Acetolactate synthase isozyme III small subunit.
 
 0.998
leuB
3-isopropylmalate dehydrogenase; Catalyzes the oxidation of 3-carboxy-2-hydroxy-4- methylpentanoate (3-isopropylmalate) to 3-carboxy-4-methyl-2- oxopentanoate. The product decarboxylates to 4-methyl-2 oxopentanoate.
 
 0.986
ilvM
Acetolactate synthase small subunit.
  
 0.986
ilvA
Threonine dehydratase; Catalyzes the anaerobic formation of alpha-ketobutyrate and ammonia from threonine in a two-step reaction. The first step involved a dehydration of threonine and a production of enamine intermediates (aminocrotonate), which tautomerizes to its imine form (iminobutyrate). Both intermediates are unstable and short-lived. The second step is the nonenzymatic hydrolysis of the enamine/imine intermediates to form 2- ketobutyrate and free ammonia. In the low water environment of the cell, the second step is accelerated by RidA.
 
 0.985
ilvC
Ketol-acid reductoisomerase; Involved in the biosynthesis of branched-chain amino acids (BCAA). Catalyzes an alkyl-migration followed by a ketol-acid reduction of (S)-2-acetolactate (S2AL) to yield (R)-2,3-dihydroxy-isovalerate. In the isomerase reaction, S2AL is rearranged via a Mg-dependent methyl migration to produce 3-hydroxy-3-methyl-2-ketobutyrate (HMKB). In the reductase reaction, this 2-ketoacid undergoes a metal-dependent reduction by NADPH to yield (R)-2,3-dihydroxy-isovalerate.
 
 
 0.983
ilvD
Dihydroxy-acid dehydratase; The CDS appears to have a deletion of 130 amino acid residues after codon 297 in comparison to orthologues; Belongs to the IlvD/Edd family.
  
 0.982
leuA
2-isopropylmalate synthase; Catalyzes the condensation of the acetyl group of acetyl-CoA with 3-methyl-2-oxobutanoate (2-oxoisovalerate) to form 3-carboxy-3- hydroxy-4-methylpentanoate (2-isopropylmalate); Belongs to the alpha-IPM synthase/homocitrate synthase family. LeuA type 1 subfamily.
 
 
 0.972
ilvI
Acetolactate synthase isozyme III large subunit.
  
  
 
0.909
CED56871.1
Pyruvate formate lyase.
     
 0.908
pflB
Formate acetyltransferase 1.
     
 0.908
Your Current Organism:
Aliivibrio wodanis
NCBI taxonomy Id: 80852
Other names: A. wodanis, ATCC BAA-104, Aliivibrio wodanis (Lunder et al. 2000) Urbanczyk et al. 2007, DSM 22225, LMG 24053, LMG:24053, NCIMB 13582, Vibrio wodanis, Vibrio wodanis Lunder et al. 2000, strain NVI 88/441
Server load: low (24%) [HD]