STRINGSTRING
folD protein (Chlamydia trachomatis) - STRING interaction network
"folD" - Bifunctional protein FolD in Chlamydia trachomatis
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
folDBifunctional protein FolD; Catalyzes the oxidation of 5,10- methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10-methenyltetrahydrofolate to 10- formyltetrahydrofolate (287 aa)    
Predicted Functional Partners:
glyA
Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF- independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism (507 aa)
   
 
  0.995
fmt
Methionyl-tRNA formyltransferase; Attaches a formyl group to the free amino group of methionyl-tRNA(fMet). The formyl group appears to play a dual role in the initiator identity of N-formylmethionyl-tRNA by promoting its recognition by IF2 and preventing the misappropriation of this tRNA by the elongation apparatus (316 aa)
 
 
  0.986
yqgN
annotation not available (178 aa)
       
  0.961
apbE
FAD-protein FMN transferase; Flavin transferase that catalyzes the transfer of the FMN moiety of FAD and its covalent binding to the hydroxyl group of a threonine residue in a target flavoprotein; Belongs to the ApbE family (316 aa)
              0.869
folP
annotation not available (450 aa)
 
   
  0.749
fusA
Elongation factor G; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post- translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome (694 aa)
     
   
  0.708
serS
Serine--tRNA ligase; Catalyzes the attachment of serine to tRNA(Ser). Is also able to aminoacylate tRNA(Sec) with serine, to form the misacylated tRNA L-seryl-tRNA(Sec), which will be further converted into selenocysteinyl-tRNA(Sec) (428 aa)
   
 
  0.706
gcvH
annotation not available (117 aa)
   
 
  0.677
ribBA
Riboflavin biosynthesis protein RibBA; Catalyzes the conversion of D-ribulose 5-phosphate to formate and 3,4-dihydroxy-2-butanone 4-phosphate; In the N-terminal section; belongs to the DHBP synthase family (424 aa)
   
   
  0.668
tuf
Elongation factor Tu; This protein promotes the GTP-dependent binding of aminoacyl-tRNA to the A-site of ribosomes during protein biosynthesis (394 aa)
     
   
  0.664
Your Current Organism:
Chlamydia trachomatis
NCBI taxonomy Id: 813
Other names: ATCC VR-571B, C. trachomatis, Chlamydia trachomatis, Chlamydozoon trachomatis, DSM 19440, Rickettsia trachomae, Rickettsia trachomatis, strain A/Har-13
Server load: low (21%) [HD]