STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
APW46461.1Ferredoxin, 2Fe-2S type, ISC system; Derived by automated computational analysis using gene prediction method: Protein Homology. (112 aa)    
Predicted Functional Partners:
hscB
Fe-S protein assembly co-chaperone HscB; Co-chaperone involved in the maturation of iron-sulfur cluster-containing proteins. Seems to help targeting proteins to be folded toward HscA; Belongs to the HscB family.
 
  
 0.986
nifU
Fe-S cluster assembly scaffold IscU; A scaffold on which IscS assembles Fe-S clusters. It is likely that Fe-S cluster coordination is flexible as the role of this complex is to build and then hand off Fe-S clusters.
 
 0.948
hscA-2
Fe-S protein assembly chaperone HscA; Chaperone involved in the maturation of iron-sulfur cluster- containing proteins. Has a low intrinsic ATPase activity which is markedly stimulated by HscB.
 
 
 0.943
iscU
Fe-S cluster assembly scaffold IscU; A scaffold on which IscS assembles Fe-S clusters. It is likely that Fe-S cluster coordination is flexible as the role of this complex is to build and then hand off Fe-S clusters.
 
 0.926
cyaY
Iron donor protein CyaY; Involved in iron-sulfur (Fe-S) cluster assembly. May act as a regulator of Fe-S biogenesis.
  
 
 0.903
iscS-2
IscS subfamily cysteine desulfurase; Master enzyme that delivers sulfur to a number of partners involved in Fe-S cluster assembly, tRNA modification or cofactor biosynthesis. Catalyzes the removal of elemental sulfur atoms from cysteine to produce alanine. Functions as a sulfur delivery protein for Fe-S cluster synthesis onto IscU, an Fe-S scaffold assembly protein, as well as other S acceptor proteins.
 
 0.875
APW48317.1
Iron-sulfur cluster assembly protein IscA; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the HesB/IscA family.
 
 
 0.854
hscA
Fe-S protein assembly chaperone HscA; Chaperone involved in the maturation of iron-sulfur cluster- containing proteins. Has a low intrinsic ATPase activity which is markedly stimulated by HscB.
 
 
 0.842
iscS
IscS subfamily cysteine desulfurase; Master enzyme that delivers sulfur to a number of partners involved in Fe-S cluster assembly, tRNA modification or cofactor biosynthesis. Catalyzes the removal of elemental sulfur atoms from cysteine to produce alanine. Functions as a sulfur delivery protein for Fe-S cluster synthesis onto IscU, an Fe-S scaffold assembly protein, as well as other S acceptor proteins; Belongs to the class-V pyridoxal-phosphate-dependent aminotransferase family. NifS/IscS subfamily.
 
 0.813
APW45447.1
IscN protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the HesB/IscA family.
 
 
 0.716
Your Current Organism:
Rhodoferax antarcticus
NCBI taxonomy Id: 81479
Other names: ATCC 700587, R. antarcticus, Rhodoferax antarcticus Madigan et al. 2001, strain ANT.BR
Server load: low (12%) [HD]