STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ptsHPhosphocarrier protein HPr; Derived by automated computational analysis using gene prediction method: Protein Homology. (89 aa)    
Predicted Functional Partners:
ptsI
Phosphoenolpyruvate--protein phosphotransferase; General (non sugar-specific) component of the phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS). This major carbohydrate active-transport system catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. Enzyme I transfers the phosphoryl group from phosphoenolpyruvate (PEP) to the phosphoryl carrier protein (HPr).
 
 0.999
APW48038.1
PTS fructose transporter subunit IIA; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.996
APW47839.1
PTS sugar transporter subunit IIA; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
  
 0.875
hprK
HPr kinase/phosphorylase; Catalyzes the ATP- as well as the pyrophosphate-dependent phosphorylation of a specific serine residue in HPr, a phosphocarrier protein of the phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS). HprK/P also catalyzes the pyrophosphate-producing, inorganic phosphate-dependent dephosphorylation (phosphorolysis) of seryl-phosphorylated HPr (P-Ser-HPr).
 
 
 
 0.871
rpsG
30S ribosomal protein S7; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. Is located at the subunit interface close to the decoding center, probably blocks exit of the E-site tRNA; Belongs to the universal ribosomal protein uS7 family.
  
    0.784
rpsL
30S ribosomal protein S12; Interacts with and stabilizes bases of the 16S rRNA that are involved in tRNA selection in the A site and with the mRNA backbone. Located at the interface of the 30S and 50S subunits, it traverses the body of the 30S subunit contacting proteins on the other side and probably holding the rRNA structure together. The combined cluster of proteins S8, S12 and S17 appears to hold together the shoulder and platform of the 30S subunit.
  
    0.611
tuf
Translation elongation factor Tu; This protein promotes the GTP-dependent binding of aminoacyl- tRNA to the A-site of ribosomes during protein biosynthesis.
   
  
 0.549
tuf-2
Translation elongation factor Tu; This protein promotes the GTP-dependent binding of aminoacyl- tRNA to the A-site of ribosomes during protein biosynthesis.
   
  
 0.549
rpsB
30S ribosomal protein S2; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the universal ribosomal protein uS2 family.
   
    0.502
rplL
50S ribosomal protein L7/L12; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors. Is thus essential for accurate translation; Belongs to the bacterial ribosomal protein bL12 family.
   
  
 0.494
Your Current Organism:
Rhodoferax antarcticus
NCBI taxonomy Id: 81479
Other names: ATCC 700587, R. antarcticus, Rhodoferax antarcticus Madigan et al. 2001, strain ANT.BR
Server load: low (18%) [HD]