STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
greA-2Transcription elongation factor GreA; Necessary for efficient RNA polymerase transcription elongation past template-encoded arresting sites. The arresting sites in DNA have the property of trapping a certain fraction of elongating RNA polymerases that pass through, resulting in locked ternary complexes. Cleavage of the nascent transcript by cleavage factors such as GreA or GreB allows the resumption of elongation from the new 3'terminus. GreA releases sequences of 2 to 3 nucleotides. (155 aa)    
Predicted Functional Partners:
rpoC
DNA-directed RNA polymerase, beta subunit; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.
  
 
 0.957
KRN29652.1
Hypothetical protein; Promotes RNA polymerase assembly. Latches the N- and C- terminal regions of the beta' subunit thereby facilitating its interaction with the beta and alpha subunits.
   
 
 0.949
rpoA
DNA-directed RNA polymerase subunit alpha; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.
 
 
 0.938
rpoB
DNA-directed RNA polymerase, beta subunit; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.
   
 
 0.935
rpsO
Ribosomal protein S15; Forms an intersubunit bridge (bridge B4) with the 23S rRNA of the 50S subunit in the ribosome.
  
    0.537
infB
infB protein; One of the essential components for the initiation of protein synthesis. Protects formylmethionyl-tRNA from spontaneous hydrolysis and promotes its binding to the 30S ribosomal subunits. Also involved in the hydrolysis of GTP during the formation of the 70S ribosomal complex; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. IF-2 subfamily.
  
  
 0.518
KRN29649.1
16S rRNA methyltransferase B; Specifically methylates the cytosine at position 967 (m5C967) of 16S rRNA.
  
  
 0.478
rny
Phosphodiesterase; Endoribonuclease that initiates mRNA decay.
  
  
 0.431
efp
Elongation factor P; Involved in peptide bond synthesis. Stimulates efficient translation and peptide-bond synthesis on native or reconstituted 70S ribosomes in vitro. Probably functions indirectly by altering the affinity of the ribosome for aminoacyl-tRNA, thus increasing their reactivity as acceptors for peptidyl transferase.
  
  
 0.421
groL
Chaperonin GroEL; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions.
   
  
 0.416
Your Current Organism:
Lactobacillus selangorensis
NCBI taxonomy Id: 81857
Other names: ATCC BAA-66, CCUG 43347, CIP 106482, DSM 13344, L. selangorensis, LMG 17710, LMG:17710, Lactobacillus selangorensis (Leisner et al. 2000) Haakensen et al. 2011, Lactobacillus sp. LMG17710, Paralactobacillus selangorensis, Paralactobacillus selangorensis Leisner et al. 2000, bacterium LMG17714
Server load: low (18%) [HD]