node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
AKJ40816.1 | AKJ42477.1 | QQ39_00955 | QQ39_10595 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.996 |
AKJ40816.1 | AKJ42732.1 | QQ39_00955 | QQ39_12095 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I 75 kDa subunit family. | 0.960 |
AKJ40816.1 | cyoA | QQ39_00955 | QQ39_02575 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.894 |
AKJ40816.1 | cyoB | QQ39_00955 | QQ39_02570 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Cytochrome o ubiquinol oxidase subunit I; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the heme-copper respiratory oxidase family. | 0.898 |
AKJ40816.1 | cyoC | QQ39_00955 | QQ39_02565 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Cytochrome o ubiquinol oxidase subunit III; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.892 |
AKJ40816.1 | nuoB | QQ39_00955 | QQ39_12115 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. | 0.870 |
AKJ40816.1 | nuoC | QQ39_00955 | QQ39_12110 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | NADH:ubiquinone oxidoreductase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; In the C-terminal section; belongs to the complex I 49 kDa subunit family. | 0.999 |
AKJ40816.1 | nuoE | QQ39_00955 | QQ39_12105 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | NADH dehydrogenase; Catalyzes the transfer of electrons from NADH to quinone; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.940 |
AKJ40816.1 | nuoF | QQ39_00955 | QQ39_12100 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Belongs to the complex I 51 kDa subunit family. | 0.967 |
AKJ40816.1 | nuoM | QQ39_00955 | QQ39_12065 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | NADH:ubiquinone oxidoreductase subunit M; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.807 |
AKJ42477.1 | AKJ40816.1 | QQ39_10595 | QQ39_00955 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.996 |
AKJ42477.1 | AKJ42732.1 | QQ39_10595 | QQ39_12095 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I 75 kDa subunit family. | 0.994 |
AKJ42477.1 | cyoA | QQ39_10595 | QQ39_02575 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.993 |
AKJ42477.1 | cyoB | QQ39_10595 | QQ39_02570 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Cytochrome o ubiquinol oxidase subunit I; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the heme-copper respiratory oxidase family. | 0.995 |
AKJ42477.1 | cyoC | QQ39_10595 | QQ39_02565 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Cytochrome o ubiquinol oxidase subunit III; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.995 |
AKJ42477.1 | nuoB | QQ39_10595 | QQ39_12115 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. | 0.986 |
AKJ42477.1 | nuoC | QQ39_10595 | QQ39_12110 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | NADH:ubiquinone oxidoreductase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; In the C-terminal section; belongs to the complex I 49 kDa subunit family. | 0.999 |
AKJ42477.1 | nuoE | QQ39_10595 | QQ39_12105 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | NADH dehydrogenase; Catalyzes the transfer of electrons from NADH to quinone; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.995 |
AKJ42477.1 | nuoF | QQ39_10595 | QQ39_12100 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Belongs to the complex I 51 kDa subunit family. | 0.995 |
AKJ42477.1 | nuoM | QQ39_10595 | QQ39_12065 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | NADH:ubiquinone oxidoreductase subunit M; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.899 |