STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
dinBDNA polymerase IV; Poorly processive, error-prone DNA polymerase involved in untargeted mutagenesis. Copies undamaged DNA at stalled replication forks, which arise in vivo from mismatched or misaligned primer ends. These misaligned primers can be extended by PolIV. Exhibits no 3'-5' exonuclease (proofreading) activity. May be involved in translesional synthesis, in conjunction with the beta clamp from PolIII. (351 aa)    
Predicted Functional Partners:
dnaN
DNA polymerase III subunit beta; Confers DNA tethering and processivity to DNA polymerases and other proteins. Acts as a clamp, forming a ring around DNA (a reaction catalyzed by the clamp-loading complex) which diffuses in an ATP- independent manner freely and bidirectionally along dsDNA. Initially characterized for its ability to contact the catalytic subunit of DNA polymerase III (Pol III), a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria; Pol III exhibits 3'-5' exonuclease proofreading activity. The beta chain is required for initiation of [...]
   
 0.982
polB
Has polymerase, DNA-binding and 3'-5' exonuclease activities. In Aeropyrum pernix this protein is sensitive to aphidicolin and stable at 95#C; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
 0.972
lexA
LexA repressor; Represses a number of genes involved in the response to DNA damage (SOS response), including recA and lexA. Binds to the 16 bp palindromic sequence 5'-CTGTATATATATACAG-3'. In the presence of single- stranded DNA, RecA interacts with LexA causing an autocatalytic cleavage which disrupts the DNA-binding part of LexA, leading to derepression of the SOS regulon and eventually DNA repair.
 
 
 0.867
AKJ40802.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.818
AKJ42217.1
DNA polymerase III subunit delta; Catalyzes the DNA-template-directed extension of the 3'-end of a DNA strand; the delta' subunit seems to interact with the gamma subunit to transfer the beta subunit on the DNA; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.811
AKJ42132.1
Pyruvate-flavodoxin oxidoreductase; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
 
 0.792
recA
Recombinase RecA; Can catalyze the hydrolysis of ATP in the presence of single- stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage; Belongs to the RecA family.
  
 0.753
AKJ41532.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.705
dnaE
DNA polymerase III subunit alpha; Catalyzes DNA-template-directed extension of the 3'- end of a DNA strand by one nucleotide at a time; main replicative polymerase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
  
 0.704
ftsW
Cell division protein FtsW; Peptidoglycan polymerase that is essential for cell division. Belongs to the SEDS family. FtsW subfamily.
   
 
 0.688
Your Current Organism:
Pragia fontium
NCBI taxonomy Id: 82985
Other names: ATCC 49100, CCUG 18073, CDC 963-84, CIP 103791, CNCTC Eb11/82, DRL 20125, DSM 5563, IP 20125, LMG 7875, LMG:7875, NCTC 12283, P. fontium, strain HG16
Server load: low (30%) [HD]