STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ptbAPTS glucose transporter subunit IIABC; Derived by automated computational analysis using gene prediction method: Protein Homology. (162 aa)    
Predicted Functional Partners:
glvC
PTS alpha-glucoside transporter subunit IICB; Involved in the phosphorylation and transport of sugars across the cell membrane; protein IIA transfers a phosphoryl group to IIB which then transfers the phosphoryl group to the sugar; IIC forms the translocation channel for the sugar uptake; Derived by automated computational analysis using gene prediction method: Protein Homology.
 0.999
scrA
PTS beta-glucoside transporter subunit EIIBCA; Phosphoenolpyruvate-dependent sugar phosphotransferase system; catalyzes the phosphorylation of incoming sugar substrates concomitant with their translocation across the cell membrane; IIB is phosphorylated by IIA and then transfers the phosphoryl group to the sugar; IIC forms the translocation channel; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
0.989
ptsP
Phosphoenolpyruvate--protein phosphotransferase; General (non sugar-specific) component of the phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS). This major carbohydrate active-transport system catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. Enzyme I transfers the phosphoryl group from phosphoenolpyruvate (PEP) to the phosphoryl carrier protein (HPr).
 
 0.986
ptsH
Phosphocarrier protein HPr; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.970
malH
6-phospho-alpha-glucosidase; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
 0.970
bglA
6-phospho-beta-glucosidase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the glycosyl hydrolase 1 family.
 
 
 0.924
ARD07208.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.922
pgi
Glucose-6-phosphate isomerase; Functions in sugar metabolism in glycolysis and the Embden-Meyerhof pathways (EMP) and in gluconeogenesis; catalyzes reversible isomerization of glucose-6-phosphate to fructose-6-phosphate; member of PGI family; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GPI family.
    
 0.921
murQ
Permease; Specifically catalyzes the cleavage of the D-lactyl ether substituent of MurNAc 6-phosphate, producing GlcNAc 6-phosphate and D- lactate.
    
 0.916
pgm3
Phosphoglucomutase; Catalyzes the interconversion of alpha-D-glucose 1-phosphate to alpha-D-glucose 6-phosphate; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
 0.903
Your Current Organism:
Lactobacillus amylolyticus
NCBI taxonomy Id: 83683
Other names: CCUG 39901, DSM 11664, JCM 12529, L. amylolyticus, LMG 18796, LMG:18796, strain LA 5
Server load: low (8%) [HD]