STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ALG06605.1Fructose 1,6-bisphosphatase; Derived by automated computational analysis using gene prediction method: Protein Homology. (350 aa)    
Predicted Functional Partners:
ALG15324.1
Transketolase; Catalyzes the transfer of a two-carbon ketol group from a ketose donor to an aldose acceptor, via a covalent intermediate with the cofactor thiamine pyrophosphate.
   
 0.961
ALG14264.1
Fructose-bisphosphate aldolase; Catalyzes the aldol condensation of dihydroxyacetone phosphate (DHAP or glycerone-phosphate) with glyceraldehyde 3-phosphate (G3P) to form fructose 1,6-bisphosphate (FBP) in gluconeogenesis and the reverse reaction in glycolysis; Belongs to the class II fructose-bisphosphate aldolase family.
  
 
 0.960
ALG09945.1
Transketolase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the transketolase family.
   
 0.959
pfp
6-phosphofructokinase; Catalyzes the phosphorylation of D-fructose 6-phosphate, the first committing step of glycolysis. Uses inorganic phosphate (PPi) as phosphoryl donor instead of ATP like common ATP-dependent phosphofructokinases (ATP-PFKs), which renders the reaction reversible, and can thus function both in glycolysis and gluconeogenesis. Consistently, PPi-PFK can replace the enzymes of both the forward (ATP- PFK) and reverse (fructose-bisphosphatase (FBPase)) reactions.
  
 
 0.958
tal
Transaldolase; Transaldolase is important for the balance of metabolites in the pentose-phosphate pathway; Belongs to the transaldolase family. Type 2 subfamily.
    
 0.947
tal-2
Transaldolase; Transaldolase is important for the balance of metabolites in the pentose-phosphate pathway; Belongs to the transaldolase family. Type 2 subfamily.
    
 0.947
ALG11611.1
Glucose-6-phosphate isomerase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GPI family.
 
  
 0.939
ALG15108.1
Fructose-bisphosphate aldolase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.926
ALG06089.1
Sugar kinase; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
 0.908
ALG09726.1
Phosphofructokinase; Derived by automated computational analysis using gene prediction method: Protein Homology.
     
 0.903
Your Current Organism:
Kibdelosporangium phytohabitans
NCBI taxonomy Id: 860235
Other names: CCTCC AA 2010001, K. phytohabitans, KCTC 19775, Kibdelosporangium phytohabitans Xing et al. 2012
Server load: low (16%) [HD]