STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
aroEShikimate dehydrogenase substrate binding domain protein. (286 aa)    
Predicted Functional Partners:
aroB
3-dehydroquinate synthase; Catalyzes the conversion of 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) to dehydroquinate (DHQ).
 
 0.999
aroA
3-phosphoshikimate 1-carboxyvinyltransferase; Catalyzes the transfer of the enolpyruvyl moiety of phosphoenolpyruvate (PEP) to the 5-hydroxyl of shikimate-3-phosphate (S3P) to produce enolpyruvyl shikimate-3-phosphate and inorganic phosphate.
 
 0.996
aroK
Shikimate kinase; Catalyzes the specific phosphorylation of the 3-hydroxyl group of shikimic acid using ATP as a cosubstrate; Belongs to the shikimate kinase family.
 
 
 0.996
aroC
Chorismate synthase; Catalyzes the anti-1,4-elimination of the C-3 phosphate and the C-6 proR hydrogen from 5-enolpyruvylshikimate-3-phosphate (EPSP) to yield chorismate, which is the branch point compound that serves as the starting substrate for the three terminal pathways of aromatic amino acid biosynthesis. This reaction introduces a second double bond into the aromatic ring system.
 
 
 0.987
aroQ
3-dehydroquinate dehydratase, type II; Catalyzes a trans-dehydration via an enolate intermediate. Belongs to the type-II 3-dehydroquinase family.
 
 
 0.979
CCQ45381.1
Shikimate 5-dehydrogenase-like protein HI_0607.
  
  
0.949
aroE-2
Quinate/shikimate dehydrogenase; Involved in the biosynthesis of the chorismate, which leads to the biosynthesis of aromatic amino acids. Catalyzes the reversible NADPH linked reduction of 3-dehydroshikimate (DHSA) to yield shikimate (SA).
  
  
0.949
mltG
Aminodeoxychorismate lyase family protein; Functions as a peptidoglycan terminase that cleaves nascent peptidoglycan strands endolytically to terminate their elongation. Belongs to the transglycosylase MltG family.
  
    0.942
trpE
Anthranilate synthase component I; Part of a heterotetrameric complex that catalyzes the two- step biosynthesis of anthranilate, an intermediate in the biosynthesis of L-tryptophan. In the first step, the glutamine-binding beta subunit (TrpG) of anthranilate synthase (AS) provides the glutamine amidotransferase activity which generates ammonia as a substrate that, along with chorismate, is used in the second step, catalyzed by the large alpha subunit of AS (TrpE) to produce anthranilate. In the absence of TrpG, TrpE can synthesize anthranilate directly from chorismate and high concentr [...]
 
 
 0.912
menF
Isochorismate synthases family protein.
  
  
 0.865
Your Current Organism:
Pseudarthrobacter siccitolerans
NCBI taxonomy Id: 861266
Other names: Arthrobacter siccitolerans, Arthrobacter siccitolerans Santacruz-Calvo et al. 2013, Arthrobacter sp. 4J27, CECT 8257, LMG 27359, LMG:27359, P. siccitolerans, Pseudarthrobacter siccitolerans (SantacCruz-Calvo et al. 2013) Busse 2016, strain 4J27
Server load: low (28%) [HD]