STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
lonLon ATP-dependent protease; ATP-dependent serine protease that mediates the selective degradation of mutant and abnormal proteins as well as certain short- lived regulatory proteins. Required for cellular homeostasis and for survival from DNA damage and developmental changes induced by stress. Degrades polypeptides processively to yield small peptide fragments that are 5 to 10 amino acids long. Binds to DNA in a double-stranded, site-specific manner. (828 aa)    
Predicted Functional Partners:
BMS_0146
Putative membrane protein.
       0.741
groL
60 kDa chaperonin; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions.
  
 0.716
dnaJ
Chaperone protein; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, DnaK a [...]
  
  
 0.700
grpE
Protein grpE (HSP-70 cofactor); Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds [...]
  
  
 0.699
htpG
Chaperone protein (heat shock protein).
   
  
 0.681
dnaK
Chaperone protein dnaK (HSP70); Acts as a chaperone; Belongs to the heat shock protein 70 family.
  
  
 0.614
clpB
ClpB protein (heat shock protein f84.1); Belongs to the ClpA/ClpB family.
  
 
 0.597
clpA
Putative ATP-dependent Clp protease ATP-binding subunit; Belongs to the ClpA/ClpB family.
  
 
 0.597
BMS_2874
Putative heat shock-like protein.
  
  
 0.594
clpP
ATP-dependent Clp protease proteolytic subunit (Endopeptidase Clp); Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. Belongs to the peptidase S14 family.
  
 
 0.569
Your Current Organism:
Halobacteriovorax marinus
NCBI taxonomy Id: 862908
Other names: Bacteriovorax marinus SJ, Bdellovibrio sp. SJ, H. marinus SJ, Halobacteriovorax marinus SJ
Server load: low (24%) [HD]