STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
coxA-3Cytochrome C oxidase subunit I; Derived by automated computational analysis using gene prediction method: Protein Homology. (573 aa)    
Predicted Functional Partners:
coxB-2
Hypothetical protein; Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B).
 
 0.999
coxB-3
Cytochrome C oxidase subunit II; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.998
KPL89654.1
Cytochrome oxidase subunit III; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.997
coxB
Cytochrome C oxidase subunit II; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.994
nuoC-2
NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 30 kDa subunit family. In the C-terminal section; belongs to the complex I 49 kDa subunit family.
   
 
 0.992
KPL87676.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.992
nuoF
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
 
 0.962
cyoE-2
Hypothetical protein; Converts heme B (protoheme IX) to heme O by substitution of the vinyl group on carbon 2 of heme B porphyrin ring with a hydroxyethyl farnesyl side group.
 
 0.962
nuoH
NADH-quinone oxidoreductase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone.
   
 
 0.954
nuoM
NADH dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
 
 0.935
Your Current Organism:
Ardenticatena maritima
NCBI taxonomy Id: 872965
Other names: A. maritima, ATCC BAA-2145, Ardenticatena maritima Kawaichi et al. 2013, DSM 23922, JCM 17282, KCTC 23289, NBRC 107679, filamentous thermophilic bacterium 110S, strain 110S
Server load: low (20%) [HD]