STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
AMB92017.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. (346 aa)    
Predicted Functional Partners:
gap
Glyceraldehyde-3-phosphate dehydrogenase; NAD-dependent; catalyzes the formation of 3-phospho-D-glyceroyl phosphate from D-glyceraldehyde 3-phosphate; active during glycolysis; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the glyceraldehyde-3-phosphate dehydrogenase family.
  
  
 0.824
pgk
Phosphoglycerate kinase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the phosphoglycerate kinase family.
  
  
 0.648
tpiA
Triose-phosphate isomerase; Involved in the gluconeogenesis. Catalyzes stereospecifically the conversion of dihydroxyacetone phosphate (DHAP) to D- glyceraldehyde-3-phosphate (G3P); Belongs to the triosephosphate isomerase family.
  
  
 0.629
eno
Enolase; Catalyzes the reversible conversion of 2-phosphoglycerate into phosphoenolpyruvate. It is essential for the degradation of carbohydrates via glycolysis; Belongs to the enolase family.
  
  
 0.558
AMB92184.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
     0.530
clpP
ATP-dependent Clp protease proteolytic subunit; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. Belongs to the peptidase S14 family.
       0.484
AMB92180.1
Transcriptional regulator; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
   
 0.440
Your Current Organism:
Aerococcus christensenii
NCBI taxonomy Id: 87541
Other names: A. christensenii, Aerococcus sp. CCUG 28826, CCUG 28831, CIP 106115, DSM 15819, strain UWO6
Server load: low (24%) [HD]