STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
atpHatpH ATP synthase F1 subcomplex delta subunit; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (177 aa)    
Predicted Functional Partners:
atpC
atpC ATP synthase F1 subcomplex epsilon subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane.
 
 0.999
atpD
atpD ATP synthase F1 subcomplex beta subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits.
 
 0.999
atpG
atpG ATP synthase F1 subcomplex gamma subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex.
 
 0.999
atpA
atpA ATP synthase F1 subcomplex alpha subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit.
 
 0.999
atpF
atpF ATP synthase F0 subcomplex B subunit; Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0); Belongs to the ATPase B chain family.
 
 0.999
aTP
ATP synthase F0 subcomplex C subunit; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation.
 
 0.999
atpB
atpB ATP synthase F0 subcomplex A subunit; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. Belongs to the ATPase A chain family.
 
 0.999
APF18326.1
WbqC-like protein family protein.
  
 0.984
APF19733.1
Inorganic pyrophosphatase.
   
 
 0.958
nuoC/nuoD
NADH dehydrogenase subunit C /NADH dehydrogenase subunit D; In the N-terminal section; belongs to the complex I 30 kDa subunit family.
  
 
 0.955
Your Current Organism:
Caldithrix abyssi
NCBI taxonomy Id: 880073
Other names: C. abyssi DSM 13497, Caldithrix abyssi DSM 13497, Caldithrix abyssi LF13, Caldithrix abyssi str. DSM 13497, Caldithrix abyssi strain DSM 13497
Server load: low (28%) [HD]