STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
hisFImidazole glycerol phosphate synthase; IGPS catalyzes the conversion of PRFAR and glutamine to IGP, AICAR and glutamate. The HisF subunit catalyzes the cyclization activity that produces IGP and AICAR from PRFAR using the ammonia provided by the HisH subunit. (251 aa)    
Predicted Functional Partners:
hisI
phosphoribosyl-AMP cyclohydrolase; Catalyzes the formation of 1-(5-phosphoribosyl)-AMP from 1-(5-phosphoribosyl)-ATP and the subsequent formation of 1-(5-phosphoribosyl)-5-((5- phosphoribosylamino)methylideneamino)imidazole-4- carboxamide from 1-(5-phosphoribosyl)-AMP in histidine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology; In the N-terminal section; belongs to the PRA-CH family.
  
 0.999
hisA
1-(5-phosphoribosyl)-5-[(5- phosphoribosylamino)methylideneamino] imidazole-4-carboxamide isomerase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
0.999
hisH
Imidazole glycerol phosphate synthase; IGPS catalyzes the conversion of PRFAR and glutamine to IGP, AICAR and glutamate. The HisH subunit catalyzes the hydrolysis of glutamine to glutamate and ammonia as part of the synthesis of IGP and AICAR. The resulting ammonia molecule is channeled to the active site of HisF.
 0.999
hisB
Imidazoleglycerol-phosphate dehydratase; Catalyzes the formation of 3-(imidazol-4-yl)-2-oxopropyl phosphate from D-ethythro-1-(imidazol-4-yl)glycerol 3-phosphate and histidinol from histidinol phosphate; Derived by automated computational analysis using gene prediction method: Protein Homology; In the C-terminal section; belongs to the imidazoleglycerol-phosphate dehydratase family.
 
 0.999
hisD
Bifunctional histidinal dehydrogenase/ histidinol dehydrogenase; Catalyzes the sequential NAD-dependent oxidations of L- histidinol to L-histidinaldehyde and then to L-histidine.
  
 0.997
hisG
ATP phosphoribosyltransferase; Catalyzes the condensation of ATP and 5-phosphoribose 1- diphosphate to form N'-(5'-phosphoribosyl)-ATP (PR-ATP). Has a crucial role in the pathway because the rate of histidine biosynthesis seems to be controlled primarily by regulation of HisG enzymatic activity. Belongs to the ATP phosphoribosyltransferase family. Long subfamily.
 
  
 0.979
hisC
Histidinol-phosphate aminotransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-II pyridoxal-phosphate-dependent aminotransferase family. Histidinol-phosphate aminotransferase subfamily.
 
  
 0.966
purH
Phosphoribosylaminoimidazolecarboxamide formyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.846
apt
Adenine phosphoribosyltransferase; Catalyzes a salvage reaction resulting in the formation of AMP, that is energically less costly than de novo synthesis.
   
 
 0.824
AHF12863.1
Adenylosuccinate lyase; Catalyzes two discrete reactions in the de novo synthesis of purines: the cleavage of adenylosuccinate and succinylaminoimidazole carboxamide ribotide; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the lyase 1 family. Adenylosuccinate lyase subfamily.
    
  0.808
Your Current Organism:
Barnesiella viscericola
NCBI taxonomy Id: 880074
Other names: B. viscericola DSM 18177, Barnesiella viscericola C46, Barnesiella viscericola DSM 18177, Barnesiella viscericola JCM 13660, Barnesiella viscericola str. DSM 18177, Barnesiella viscericola strain DSM 18177
Server load: low (24%) [HD]