STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
AHF12330.1Glycerol-3-phosphate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the NAD-dependent glycerol-3-phosphate dehydrogenase family. (331 aa)    
Predicted Functional Partners:
glpA
Sn-glycerol-3-phosphate dehydrogenase subunit A; Anaerobic, catalyzes the conversion of glycerol 3-phosphate to dihydroxyacetone using fumarate or nitrate as electron acceptor; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the FAD-dependent glycerol-3-phosphate dehydrogenase family.
  
 0.937
der
GTP-binding protein Der; GTPase that plays an essential role in the late steps of ribosome biogenesis; Belongs to the TRAFAC class TrmE-Era-EngA-EngB-Septin-like GTPase superfamily. EngA (Der) GTPase family.
 
  
 0.907
glpC
Sn-glycerol-3-phosphate dehydrogenase subunit C; Anaerobic; with GlpAB catalyzes the conversion of glycerol-3-phosphate to dihydroxyacetone phosphate; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
  0.901
AHF12905.1
Glycerol-3-phosphate dehydrogenase subunit B; Derived by automated computational analysis using gene prediction method: Protein Homology.
     
  0.900
AHF12989.1
DeoR family transcriptional regulator; Derived by automated computational analysis using gene prediction method: Protein Homology.
     
 0.823
AHF11637.1
1-acyl-sn-glycerol-3-phosphate acyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the 1-acyl-sn-glycerol-3-phosphate acyltransferase family.
    
 0.821
pgi
Glucose-6-phosphate isomerase; Functions in sugar metabolism in glycolysis and the Embden-Meyerhof pathways (EMP) and in gluconeogenesis; catalyzes reversible isomerization of glucose-6-phosphate to fructose-6-phosphate; member of PGI family; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GPI family.
  
  
 0.811
lysS
lysyl-tRNA synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-II aminoacyl-tRNA synthetase family.
  
    0.734
gpmI
Phosphoglyceromutase; Catalyzes the interconversion of 2-phosphoglycerate and 3- phosphoglycerate.
  
 
 0.586
tsaD
O-sialoglycoprotein endopeptidase; Required for the formation of a threonylcarbamoyl group on adenosine at position 37 (t(6)A37) in tRNAs that read codons beginning with adenine. Is involved in the transfer of the threonylcarbamoyl moiety of threonylcarbamoyl-AMP (TC-AMP) to the N6 group of A37, together with TsaE and TsaB. TsaD likely plays a direct catalytic role in this reaction; Belongs to the KAE1 / TsaD family.
      0.508
Your Current Organism:
Barnesiella viscericola
NCBI taxonomy Id: 880074
Other names: B. viscericola DSM 18177, Barnesiella viscericola C46, Barnesiella viscericola DSM 18177, Barnesiella viscericola JCM 13660, Barnesiella viscericola str. DSM 18177, Barnesiella viscericola strain DSM 18177
Server load: low (22%) [HD]