STRINGSTRING
DVU_0066 protein (Desulfovibrio vulgaris Hildenborough) - STRING interaction network
"DVU_0066" - Cytidine/deoxycytidylate deaminase domain protein in Desulfovibrio vulgaris Hildenborough
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
DVU_0066Cytidine/deoxycytidylate deaminase domain protein; Identified by match to protein family HMM PF00383 (189 aa)    
Predicted Functional Partners:
polA
DNA polymerase I; Identified by similarity to SP-P00582; match to protein family HMM PF00476; match to protein family HMM PF01367; match to protein family HMM PF02739; match to protein family HMM TIGR00593 (1015 aa)
         
  0.685
ribD
Riboflavin biosynthesis protein RibD; Converts 2,5-diamino-6-(ribosylamino)-4(3h)-pyrimidinone 5’-phosphate into 5-amino-6-(ribosylamino)-2,4(1h,3h)- pyrimidinedione 5’-phosphate; In the C-terminal section; belongs to the HTP reductase family (377 aa)
   
   
  0.645
guaA
GMP synthase [glutamine-hydrolyzing]; Catalyzes the synthesis of GMP from XMP (515 aa)
   
   
  0.628
DVU_0116
Identified by match to protein family HMM PF01522 (358 aa)
 
          0.585
DVU_0065
Uncharacterized protein; Identified by Glimmer2; putative (265 aa)
              0.458
glyA
Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF- independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism; Belongs to the SHMT family (412 aa)
     
      0.452
mop
Aldehyde oxidoreductase; Identified by similarity to SP-Q46509; match to protein family HMM PF00111; match to protein family HMM PF01315; match to protein family HMM PF01799; match to protein family HMM PF02738 (906 aa)
         
  0.422
guaB
Inosine-5’-monophosphate dehydrogenase; Catalyzes the conversion of inosine 5’-phosphate (IMP) to xanthosine 5’-phosphate (XMP), the first committed and rate- limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth (485 aa)
   
   
  0.404
DVU_0609
Lipoprotein, putative; Identified by similarity to OMNI-NTL01SM01830 (211 aa)
   
          0.403
Your Current Organism:
Desulfovibrio vulgaris Hildenborough
NCBI taxonomy Id: 882
Other names: D. vulgaris str. Hildenborough, Desulfovibrio vulgaris (STRAIN HILDENBOROUGH), Desulfovibrio vulgaris ATCC 29579, Desulfovibrio vulgaris Hildenborough, Desulfovibrio vulgaris str. Hildenborough, Desulfovibrio vulgaris subsp. vulgaris (strain Hildenborough), Desulfovibrio vulgaris subsp. vulgaris ATCC 29579, Desulfovibrio vulgaris subsp. vulgaris str. Hildenborough
Server load: low (19%) [HD]