STRINGSTRING
DVU_0070 protein (Desulfovibrio vulgaris Hildenborough) - STRING interaction network
"DVU_0070" - Identified by match to protein family HMM PF00149 in Desulfovibrio vulgaris Hildenborough
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
DVU_0070Identified by match to protein family HMM PF00149 (451 aa)    
Predicted Functional Partners:
DVU_0069
Uncharacterized protein; Identified by Glimmer2; putative (1467 aa)
 
 
  0.999
recA
Protein RecA; Can catalyze the hydrolysis of ATP in the presence of single-stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage (357 aa)
   
 
  0.866
recD2
ATP-dependent RecD-like DNA helicase; DNA-dependent ATPase and ATP-dependent 5’-3’ DNA helicase. Has no activity on blunt DNA or DNA with 3’-overhangs, requires at least 10 bases of 5’-ssDNA for helicase activity (742 aa)
     
 
  0.840
polA
DNA polymerase I; Identified by similarity to SP-P00582; match to protein family HMM PF00476; match to protein family HMM PF01367; match to protein family HMM PF02739; match to protein family HMM TIGR00593 (1015 aa)
   
 
  0.787
DVU_2085
Identified by match to protein family HMM PF00176; match to protein family HMM PF00271 (1055 aa)
   
 
  0.657
mutS
DNA mismatch repair protein MutS; This protein is involved in the repair of mismatches in DNA. It is possible that it carries out the mismatch recognition step. This protein has a weak ATPase activity (905 aa)
   
 
  0.623
DVU_3203
annotation not available (305 aa)
   
 
  0.608
DVU_1747
ATPase, histidine kinase-, DNA gyrase B-, and HSP90-like domain protein; Identified by match to protein family HMM PF02518; match to protein family HMM TIGR01369 (981 aa)
     
 
  0.602
mutL
DNA mismatch repair protein MutL; This protein is involved in the repair of mismatches in DNA. It is required for dam-dependent methyl-directed DNA mismatch repair. May act as a "molecular matchmaker", a protein that promotes the formation of a stable complex between two or more DNA-binding proteins in an ATP-dependent manner without itself being part of a final effector complex (744 aa)
     
 
  0.602
DVU_0453
DNA helicase; Identified by match to protein family HMM PF00580 (1070 aa)
   
 
  0.596
Your Current Organism:
Desulfovibrio vulgaris Hildenborough
NCBI taxonomy Id: 882
Other names: D. vulgaris str. Hildenborough, Desulfovibrio vulgaris (STRAIN HILDENBOROUGH), Desulfovibrio vulgaris ATCC 29579, Desulfovibrio vulgaris Hildenborough, Desulfovibrio vulgaris str. Hildenborough, Desulfovibrio vulgaris subsp. vulgaris (strain Hildenborough), Desulfovibrio vulgaris subsp. vulgaris ATCC 29579, Desulfovibrio vulgaris subsp. vulgaris str. Hildenborough
Server load: low (16%) [HD]