STRINGSTRING
DVU_0660 protein (Desulfovibrio vulgaris Hildenborough) - STRING interaction network
"DVU_0660" - Phosphoesterase in Desulfovibrio vulgaris Hildenborough
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
DVU_0660Phosphoesterase; Identified by match to protein family HMM PF00149; match to protein family HMM TIGR00040 (188 aa)    
Predicted Functional Partners:
DVU_1959
EAL domain/GGDEF domain protein; Identified by match to protein family HMM PF00563; match to protein family HMM PF00571; match to protein family HMM PF00990; match to protein family HMM TIGR00254 (797 aa)
   
   
  0.573
DVU_0659
Uncharacterized protein; Identified by Glimmer2; putative (256 aa)
              0.515
nnrD
Multifunctional fusion protein; Bifunctional enzyme that catalyzes the epimerization of the S- and R-forms of NAD(P)HX and the dehydration of the S-form of NAD(P)HX at the expense of ADP, which is converted to AMP. This allows the repair of both epimers of NAD(P)HX, a damaged form of NAD(P)H that is a result of enzymatic or heat-dependent hydration; Belongs to the NnrD/CARKD family (574 aa)
 
        0.496
DVU_0661
tRNA-dihydrouridine synthase; Catalyzes the synthesis of 5,6-dihydrouridine (D), a modified base found in the D-loop of most tRNAs, via the reduction of the C5-C6 double bond in target uridines (332 aa)
              0.492
topA
DNA topoisomerase 1; Releases the supercoiling and torsional tension of DNA, which is introduced during the DNA replication and transcription, by transiently cleaving and rejoining one strand of the DNA duplex. Introduces a single-strand break via transesterification at a target site in duplex DNA. The scissile phosphodiester is attacked by the catalytic tyrosine of the enzyme, resulting in the formation of a DNA-(5’-phosphotyrosyl)-enzyme intermediate and the expulsion of a 3’-OH DNA strand. The free DNA strand then undergoes passage around the unbroken strand, thus removing DNA super [...] (760 aa)
   
   
  0.435
poR
Pyruvate synthase; Identified by similarity to GP-1770208; match to protein family HMM PF00037; match to protein family HMM PF01558; match to protein family HMM PF01855 (1215 aa)
              0.420
DVU_1653
Identified by similarity to SP-P42977; match to protein family HMM PF00571; match to protein family HMM PF01368; match to protein family HMM PF01743; match to protein family HMM PF02272 (904 aa)
   
   
  0.420
DVU_0227
Uncharacterized protein; Identified by similarity to OMNI-VC1871 (176 aa)
   
          0.416
Your Current Organism:
Desulfovibrio vulgaris Hildenborough
NCBI taxonomy Id: 882
Other names: D. vulgaris str. Hildenborough, Desulfovibrio vulgaris (STRAIN HILDENBOROUGH), Desulfovibrio vulgaris ATCC 29579, Desulfovibrio vulgaris Hildenborough, Desulfovibrio vulgaris str. Hildenborough, Desulfovibrio vulgaris subsp. vulgaris (strain Hildenborough), Desulfovibrio vulgaris subsp. vulgaris ATCC 29579, Desulfovibrio vulgaris subsp. vulgaris str. Hildenborough
Server load: low (23%) [HD]