STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
dnaKdnaK protein; Acts as a chaperone; Belongs to the heat shock protein 70 family. (636 aa)    
Predicted Functional Partners:
grpE
Heat shock protein GrpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP- [...]
 
 0.999
htpG
Heat shock protein HtpG; Molecular chaperone. Has ATPase activity; Belongs to the heat shock protein 90 family.
 
 0.999
groEL
Chaperonin, 60 kDa; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions.
 
 0.998
dnaJ
dnaJ protein; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, DnaK and Gr [...]
 0.998
DVU_1876
dnaJ protein, putative; Identified by similarity to SP:P08622; match to protein family HMM PF00226; match to protein family HMM PF01556.
 0.995
groES
Chaperonin, 10 kDa; Binds to Cpn60 in the presence of Mg-ATP and suppresses the ATPase activity of the latter.
  
 
 0.993
clpB
ATP-dependent Clp protease, ATP-binding subunit ClpB; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE. Acts before DnaK, in the processing of protein aggregates. Protein binding stimulates the ATPase activity; ATP hydrolysis unfolds the denatured protein aggregates, which probably helps expose new hydrophobic binding sites on the surface of ClpB-bound aggregates, contributing to the solubilization and refolding of denatured protein aggregates by DnaK (By similarity). Belongs to [...]
  
 
 0.983
hrcA
Heat-inducible transcription repressor HrcA; Negative regulator of class I heat shock genes (grpE-dnaK- dnaJ and groELS operons). Prevents heat-shock induction of these operons.
  
  
 0.981
DVU_0665
Nitrogen fixation protein nifU; May be involved in the formation or repair of [Fe-S] clusters present in iron-sulfur proteins; Belongs to the NifU family.
  
 
 0.976
clpA
ATP-dependent Clp protease, ATP-binding subunit ClpA; Identified by similarity to SP:P15716; match to protein family HMM PF00004; match to protein family HMM PF02861; Belongs to the ClpA/ClpB family.
  
 
 0.975
Your Current Organism:
Desulfovibrio vulgaris Hildenborough
NCBI taxonomy Id: 882
Other names: D. vulgaris str. Hildenborough, Desulfovibrio vulgaris (STRAIN HILDENBOROUGH), Desulfovibrio vulgaris ATCC 29579, Desulfovibrio vulgaris str. Hildenborough, Desulfovibrio vulgaris subsp. vulgaris (strain Hildenborough), Desulfovibrio vulgaris subsp. vulgaris ATCC 29579, Desulfovibrio vulgaris subsp. vulgaris str. Hildenborough
Server load: low (32%) [HD]