STRINGSTRING
DVU_1000 protein (Desulfovibrio vulgaris Hildenborough) - STRING interaction network
"DVU_1000" - Peptidase, M24 family in Desulfovibrio vulgaris Hildenborough
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
DVU_1000Peptidase, M24 family; Identified by match to protein family HMM PF00557 (407 aa)    
Predicted Functional Partners:
DVU_1002
Conserved domain protein; Identified by match to protein family HMM PF03692 (151 aa)
   
        0.693
DVU_1003
DnaJ domain protein; Identified by match to protein family HMM PF00226 (328 aa)
   
   
  0.682
DVU_1001
Identified by match to protein family HMM PF02629 (134 aa)
              0.681
polA
DNA polymerase I; Identified by similarity to SP-P00582; match to protein family HMM PF00476; match to protein family HMM PF01367; match to protein family HMM PF02739; match to protein family HMM TIGR00593 (1015 aa)
   
   
  0.592
sucCD
Succinate--CoA ligase [ADP-forming] subunit alpha; Succinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of either ATP or GTP and thus represents the only step of substrate-level phosphorylation in the TCA. The alpha subunit of the enzyme binds the substrates coenzyme A and phosphate, while succinate binding and nucleotide specificity is provided by the beta subunit (709 aa)
   
   
  0.577
DVU_0941
Peptidase, M16 family; Identified by match to protein family HMM PF00675; match to protein family HMM PF05193 (964 aa)
   
      0.561
atpD
ATP synthase subunit beta; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits; Belongs to the ATPase alpha/beta chains family (470 aa)
     
 
  0.526
guaB
Inosine-5’-monophosphate dehydrogenase; Catalyzes the conversion of inosine 5’-phosphate (IMP) to xanthosine 5’-phosphate (XMP), the first committed and rate- limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth (485 aa)
   
      0.504
gatA
Glutamyl-tRNA(Gln) amidotransferase subunit A; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in organisms which lack glutaminyl-tRNA synthetase. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu-tRNA(Gln); Belongs to the amidase family. GatA subfamily (489 aa)
     
      0.501
poR
Pyruvate synthase; Identified by similarity to GP-1770208; match to protein family HMM PF00037; match to protein family HMM PF01558; match to protein family HMM PF01855 (1215 aa)
         
  0.487
Your Current Organism:
Desulfovibrio vulgaris Hildenborough
NCBI taxonomy Id: 882
Other names: D. vulgaris str. Hildenborough, Desulfovibrio vulgaris (STRAIN HILDENBOROUGH), Desulfovibrio vulgaris ATCC 29579, Desulfovibrio vulgaris Hildenborough, Desulfovibrio vulgaris str. Hildenborough, Desulfovibrio vulgaris subsp. vulgaris (strain Hildenborough), Desulfovibrio vulgaris subsp. vulgaris ATCC 29579, Desulfovibrio vulgaris subsp. vulgaris str. Hildenborough
Server load: low (18%) [HD]