STRINGSTRING
upp protein (Desulfovibrio vulgaris Hildenborough) - STRING interaction network
"upp" - Uracil phosphoribosyltransferase in Desulfovibrio vulgaris Hildenborough
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
uppUracil phosphoribosyltransferase; Catalyzes the conversion of uracil and 5-phospho-alpha- D-ribose 1-diphosphate (PRPP) to UMP and diphosphate (208 aa)    
Predicted Functional Partners:
pyrH
Uridylate kinase; Catalyzes the reversible phosphorylation of UMP to UDP (238 aa)
     
 
  0.967
uraA
Uracil permease; Identified by similarity to SP-P39766; match to protein family HMM PF00860; match to protein family HMM TIGR00801 (419 aa)
   
  0.963
DVU_1580
Ribose 5-phosphate isomerase, putative; Identified by match to protein family HMM PF02502; match to protein family HMM TIGR00689; match to protein family HMM TIGR01120 (147 aa)
   
      0.955
pyrF
Orotidine 5’-phosphate decarboxylase; Catalyzes the decarboxylation of orotidine 5’- monophosphate (OMP) to uridine 5’-monophosphate (UMP); Belongs to the OMP decarboxylase family. Type 1 subfamily (235 aa)
   
 
  0.953
deoD
Purine nucleoside phosphorylase; The purine nucleoside phosphorylases catalyze the phosphorolytic breakdown of the N-glycosidic bond in the beta- (deoxy)ribonucleoside molecules, with the formation of the corresponding free purine bases and pentose-1-phosphate (274 aa)
       
  0.926
cmk
Cytidylate kinase; Identified by similarity to SP-P23863; match to protein family HMM PF02224; match to protein family HMM TIGR00017; Belongs to the cytidylate kinase family. Type 1 subfamily (232 aa)
   
 
    0.909
DVU_1186
MazG family protein; Identified by similarity to OMNI-VC2450; match to protein family HMM PF03819; match to protein family HMM TIGR00444 (267 aa)
       
    0.904
surE
5’-nucleotidase SurE; Nucleotidase that shows phosphatase activity on nucleoside 5’-monophosphates; Belongs to the SurE nucleotidase family (250 aa)
         
  0.900
pyrR
Bifunctional protein PyrR; Also displays a weak uracil phosphoribosyltransferase activity which is not physiologically significant (178 aa)
     
 
  0.895
glyA
Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF- independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism; Belongs to the SHMT family (412 aa)
   
   
  0.773
Your Current Organism:
Desulfovibrio vulgaris Hildenborough
NCBI taxonomy Id: 882
Other names: D. vulgaris str. Hildenborough, Desulfovibrio vulgaris (STRAIN HILDENBOROUGH), Desulfovibrio vulgaris ATCC 29579, Desulfovibrio vulgaris Hildenborough, Desulfovibrio vulgaris str. Hildenborough, Desulfovibrio vulgaris subsp. vulgaris (strain Hildenborough), Desulfovibrio vulgaris subsp. vulgaris ATCC 29579, Desulfovibrio vulgaris subsp. vulgaris str. Hildenborough
Server load: low (30%) [HD]