STRINGSTRING
trmE protein (Desulfovibrio vulgaris Hildenborough) - STRING interaction network
"trmE" - tRNA modification GTPase MnmE in Desulfovibrio vulgaris Hildenborough
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
trmEtRNA modification GTPase MnmE; Exhibits a very high intrinsic GTPase hydrolysis rate. Involved in the addition of a carboxymethylaminomethyl (cmnm) group at the wobble position (U34) of certain tRNAs, forming tRNA- cmnm(5)s(2)U34; Belongs to the TRAFAC class TrmE-Era-EngA-EngB-Septin- like GTPase superfamily. TrmE GTPase family (457 aa)    
Predicted Functional Partners:
gidA
tRNA uridine 5-carboxymethylaminomethyl modification enzyme MnmG; NAD-binding protein involved in the addition of a carboxymethylaminomethyl (cmnm) group at the wobble position (U34) of certain tRNAs, forming tRNA-cmnm(5)s(2)U34; Belongs to the MnmG family (629 aa)
 
  0.989
leuS
Leucine--tRNA ligase; Identified by similarity to SP-P07813; match to protein family HMM PF00133; match to protein family HMM TIGR00396; Belongs to the class-I aminoacyl-tRNA synthetase family (829 aa)
   
  0.963
gidB
Ribosomal RNA small subunit methyltransferase G; Specifically methylates the N7 position of guanine in position 527 of 16S rRNA (218 aa)
 
   
  0.919
rnpA
Ribonuclease P protein component; RNaseP catalyzes the removal of the 5’-leader sequence from pre-tRNA to produce the mature 5’-terminus. It can also cleave other RNA substrates such as 4.5S RNA. The protein component plays an auxiliary but essential role in vivo by binding to the 5’-leader sequence and broadening the substrate specificity of the ribozyme (96 aa)
   
   
  0.897
ileS
Isoleucine--tRNA ligase; Catalyzes the attachment of isoleucine to tRNA(Ile). As IleRS can inadvertently accommodate and process structurally similar amino acids such as valine, to avoid such errors it has two additional distinct tRNA(Ile)-dependent editing activities. One activity is designated as ’pretransfer’ editing and involves the hydrolysis of activated Val-AMP. The other activity is designated ’posttransfer’ editing and involves deacylation of mischarged Val-tRNA(Ile) (938 aa)
   
   
  0.877
yidC
Membrane protein insertase YidC; Required for the insertion and/or proper folding and/or complex formation of integral membrane proteins into the membrane. Involved in integration of membrane proteins that insert both dependently and independently of the Sec translocase complex, as well as at least some lipoproteins. Aids folding of multispanning membrane proteins (534 aa)
 
 
  0.853
trmU
tRNA-specific 2-thiouridylase MnmA; Catalyzes the 2-thiolation of uridine at the wobble position (U34) of tRNA, leading to the formation of s(2)U34 (346 aa)
 
 
  0.803
leuC
3-isopropylmalate dehydratase large subunit; Catalyzes the isomerization between 2-isopropylmalate and 3-isopropylmalate, via the formation of 2-isopropylmaleate; Belongs to the aconitase/IPM isomerase family. LeuC type 2 subfamily (419 aa)
 
       
  0.786
obg
GTPase Obg; An essential GTPase which binds GTP, GDP and possibly (p)ppGpp with moderate affinity, with high nucleotide exchange rates and a fairly low GTP hydrolysis rate. Plays a role in control of the cell cycle, stress response, ribosome biogenesis and in those bacteria that undergo differentiation, in morphogenesis control; Belongs to the TRAFAC class OBG-HflX-like GTPase superfamily. OBG GTPase family (366 aa)
 
   
  0.781
prfA
Peptide chain release factor 1; Peptide chain release factor 1 directs the termination of translation in response to the peptide chain termination codons UAG and UAA (357 aa)
 
   
  0.780
Your Current Organism:
Desulfovibrio vulgaris Hildenborough
NCBI taxonomy Id: 882
Other names: D. vulgaris str. Hildenborough, Desulfovibrio vulgaris (STRAIN HILDENBOROUGH), Desulfovibrio vulgaris ATCC 29579, Desulfovibrio vulgaris Hildenborough, Desulfovibrio vulgaris str. Hildenborough, Desulfovibrio vulgaris subsp. vulgaris (strain Hildenborough), Desulfovibrio vulgaris subsp. vulgaris ATCC 29579, Desulfovibrio vulgaris subsp. vulgaris str. Hildenborough
Server load: low (21%) [HD]