STRINGSTRING
ftsH protein (Desulfovibrio vulgaris Hildenborough) - STRING interaction network
"ftsH" - ATP-dependent zinc metalloprotease FtsH in Desulfovibrio vulgaris Hildenborough
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ftsHATP-dependent zinc metalloprotease FtsH; Acts as a processive, ATP-dependent zinc metallopeptidase for both cytoplasmic and membrane proteins. Plays a role in the quality control of integral membrane proteins; Belongs to the AAA ATPase family (656 aa)    
Predicted Functional Partners:
folP
Dihydropteroate synthase; Catalyzes the condensation of para-aminobenzoate (pABA) with 6-hydroxymethyl-7,8-dihydropterin diphosphate (DHPt-PP) to form 7,8-dihydropteroate (H2Pte), the immediate precursor of folate derivatives (286 aa)
 
   
  0.907
DVU_1281
Uncharacterized protein; Identified by similarity to OMNI-NTL01TT2044 (300 aa)
              0.883
dacA
Diadenylate cyclase; Catalyzes the condensation of 2 ATP molecules into cyclic di-AMP (c-di-AMP), a second messenger used to regulate differing processes in different bacteria (248 aa)
              0.883
infB
Translation initiation factor IF-2; One of the essential components for the initiation of protein synthesis. Protects formylmethionyl-tRNA from spontaneous hydrolysis and promotes its binding to the 30S ribosomal subunits. Also involved in the hydrolysis of GTP during the formation of the 70S ribosomal complex (1079 aa)
 
   
  0.824
glmM
Phosphoglucosamine mutase; Catalyzes the conversion of glucosamine-6-phosphate to glucosamine-1-phosphate; Belongs to the phosphohexose mutase family (450 aa)
 
   
  0.811
DVU_0684
Protein HflK; HflC and HflK could encode or regulate a protease (378 aa)
 
 
  0.793
atpA
ATP synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit (502 aa)
   
 
  0.789
dnaK
Chaperone protein DnaK; Acts as a chaperone (636 aa)
 
 
  0.781
rrmJ
Ribosomal RNA large subunit methyltransferase E; Specifically methylates the uridine in position 2552 of 23S rRNA at the 2’-O position of the ribose in the fully assembled 50S ribosomal subunit (204 aa)
   
  0.776
polA
DNA polymerase I; Identified by similarity to SP-P00582; match to protein family HMM PF00476; match to protein family HMM PF01367; match to protein family HMM PF02739; match to protein family HMM TIGR00593 (1015 aa)
   
   
  0.769
Your Current Organism:
Desulfovibrio vulgaris Hildenborough
NCBI taxonomy Id: 882
Other names: D. vulgaris str. Hildenborough, Desulfovibrio vulgaris (STRAIN HILDENBOROUGH), Desulfovibrio vulgaris ATCC 29579, Desulfovibrio vulgaris Hildenborough, Desulfovibrio vulgaris str. Hildenborough, Desulfovibrio vulgaris subsp. vulgaris (strain Hildenborough), Desulfovibrio vulgaris subsp. vulgaris ATCC 29579, Desulfovibrio vulgaris subsp. vulgaris str. Hildenborough
Server load: low (15%) [HD]