STRINGSTRING
DVU_1367 protein (Desulfovibrio vulgaris Hildenborough) - STRING interaction network
"DVU_1367" - Sec-independent protein translocase protein TatA in Desulfovibrio vulgaris Hildenborough
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
DVU_1367Sec-independent protein translocase protein TatA; Part of the twin-arginine translocation (Tat) system that transports large folded proteins containing a characteristic twin-arginine motif in their signal peptide across membranes. TatA could form the protein-conducting channel of the Tat system (65 aa)    
Predicted Functional Partners:
tatC
Sec-independent protein translocase protein TatC; Part of the twin-arginine translocation (Tat) system that transports large folded proteins containing a characteristic twin-arginine motif in their signal peptide across membranes. Together with TatB, TatC is part of a receptor directly interacting with Tat signal peptides (257 aa)
 
 
  0.974
DVU_2450
Sec-independent protein translocase protein TatA; Part of the twin-arginine translocation (Tat) system that transports large folded proteins containing a characteristic twin-arginine motif in their signal peptide across membranes. TatA could form the protein-conducting channel of the Tat system (68 aa)
   
   
 
0.807
yidC
Membrane protein insertase YidC; Required for the insertion and/or proper folding and/or complex formation of integral membrane proteins into the membrane. Involved in integration of membrane proteins that insert both dependently and independently of the Sec translocase complex, as well as at least some lipoproteins. Aids folding of multispanning membrane proteins (534 aa)
     
 
  0.658
DVU_1368
Rhodanese-like domain protein; Identified by match to protein family HMM PF00581 (540 aa)
   
   
  0.608
DVU_1371
HAD-superfamily hydrolase, subfamily IA; Identified by match to protein family HMM PF00702; match to protein family HMM TIGR01549 (224 aa)
   
        0.593
argS
Arginine--tRNA ligase; Identified by similarity to SP-P35868; match to protein family HMM PF00750; match to protein family HMM PF03485; match to protein family HMM PF05746; match to protein family HMM TIGR00456 (551 aa)
         
  0.590
serS
Serine--tRNA ligase; Catalyzes the attachment of serine to tRNA(Ser). Is also able to aminoacylate tRNA(Sec) with serine, to form the misacylated tRNA L-seryl-tRNA(Sec), which will be further converted into selenocysteinyl-tRNA(Sec) (424 aa)
         
  0.589
DVU_1370
Uncharacterized protein; Identified by Glimmer2; putative (290 aa)
              0.582
gyrA
DNA gyrase subunit A; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Also able to catalyze the interconversion of other topological isomers of dsDNA rings, including catenanes and knotted rings. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner (856 aa)
       
 
  0.530
DVU_2661
annotation not available (521 aa)
       
 
  0.517
Your Current Organism:
Desulfovibrio vulgaris Hildenborough
NCBI taxonomy Id: 882
Other names: D. vulgaris str. Hildenborough, Desulfovibrio vulgaris (STRAIN HILDENBOROUGH), Desulfovibrio vulgaris ATCC 29579, Desulfovibrio vulgaris Hildenborough, Desulfovibrio vulgaris str. Hildenborough, Desulfovibrio vulgaris subsp. vulgaris (strain Hildenborough), Desulfovibrio vulgaris subsp. vulgaris ATCC 29579, Desulfovibrio vulgaris subsp. vulgaris str. Hildenborough
Server load: low (21%) [HD]