STRINGSTRING
pyrG protein (Desulfovibrio vulgaris Hildenborough) - STRING interaction network
"pyrG" - CTP synthase in Desulfovibrio vulgaris Hildenborough
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
pyrGCTP synthase; Catalyzes the ATP-dependent amination of UTP to CTP with either L-glutamine or ammonia as the source of nitrogen. Regulates intracellular CTP levels through interactions with the four ribonucleotide triphosphates (547 aa)    
Predicted Functional Partners:
rpoB
DNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates (1372 aa)
     
  0.993
guaA
GMP synthase [glutamine-hydrolyzing]; Catalyzes the synthesis of GMP from XMP (515 aa)
 
 
  0.981
rpoC
DNA-directed RNA polymerase subunit beta’; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates (1385 aa)
     
  0.976
rpoA
DNA-directed RNA polymerase subunit alpha; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates (347 aa)
     
  0.972
guaB
Inosine-5’-monophosphate dehydrogenase; Catalyzes the conversion of inosine 5’-phosphate (IMP) to xanthosine 5’-phosphate (XMP), the first committed and rate- limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth (485 aa)
   
 
  0.968
DVU_1186
MazG family protein; Identified by similarity to OMNI-VC2450; match to protein family HMM PF03819; match to protein family HMM TIGR00444 (267 aa)
 
  0.948
rpoZ
DNA-directed RNA polymerase subunit omega; Promotes RNA polymerase assembly. Latches the N- and C- terminal regions of the beta’ subunit thereby facilitating its interaction with the beta and alpha subunits (77 aa)
   
 
  0.945
ndk
Nucleoside diphosphate kinase; Major role in the synthesis of nucleoside triphosphates other than ATP. The ATP gamma phosphate is transferred to the NDP beta phosphate via a ping-pong mechanism, using a phosphorylated active-site intermediate (139 aa)
 
 
  0.933
DVU_2947
Anaerobic ribonucleoside-triphosphate reductase, putative; Identified by similarity to GP-4127320; match to protein family HMM PF03477 (689 aa)
         
  0.914
DVU_0299
Anaerobic ribonucleoside-triphosphate reductase, putative; Identified by similarity to GP-4127320; match to protein family HMM PF03477 (681 aa)
         
  0.914
Your Current Organism:
Desulfovibrio vulgaris Hildenborough
NCBI taxonomy Id: 882
Other names: D. vulgaris str. Hildenborough, Desulfovibrio vulgaris (STRAIN HILDENBOROUGH), Desulfovibrio vulgaris ATCC 29579, Desulfovibrio vulgaris Hildenborough, Desulfovibrio vulgaris str. Hildenborough, Desulfovibrio vulgaris subsp. vulgaris (strain Hildenborough), Desulfovibrio vulgaris subsp. vulgaris ATCC 29579, Desulfovibrio vulgaris subsp. vulgaris str. Hildenborough
Server load: low (17%) [HD]