STRINGSTRING
DVU_1876 protein (Desulfovibrio vulgaris Hildenborough) - STRING interaction network
"DVU_1876" - DnaJ protein, putative in Desulfovibrio vulgaris Hildenborough
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
DVU_1876DnaJ protein, putative; Identified by similarity to SP-P08622; match to protein family HMM PF00226; match to protein family HMM PF01556 (316 aa)    
Predicted Functional Partners:
DVU_1875
DafA protein; Identified by similarity to SP-P77527 (105 aa)
   
 
  0.987
dnaK
Chaperone protein DnaK; Acts as a chaperone (636 aa)
 
  0.976
clpB
Chaperone protein ClpB; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE. Acts before DnaK, in the processing of protein aggregates. Protein binding stimulates the ATPase activity; ATP hydrolysis unfolds the denatured protein aggregates, which probably helps expose new hydrophobic binding sites on the surface of ClpB-bound aggregates, contributing to the solubilization and refolding of denatured protein aggregates by DnaK (By similarity); Belongs to the ClpA/ClpB family (865 aa)
 
 
  0.952
grpE
Protein GrpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP- dependent [...] (191 aa)
 
 
  0.925
DVU_2339
annotation not available (283 aa)
   
   
  0.795
clpA
ATP-dependent Clp protease, ATP-binding subunit ClpA; Identified by similarity to SP-P15716; match to protein family HMM PF00004; match to protein family HMM PF02861 (776 aa)
 
 
  0.778
htpG
Chaperone protein HtpG; Molecular chaperone. Has ATPase activity; Belongs to the heat shock protein 90 family (637 aa)
   
 
  0.751
uvrA
UvrABC system protein A; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrA is an ATPase and a DNA-binding protein. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. When the presence of a lesion has been verified by UvrB, the UvrA molecules dissociate (956 aa)
   
 
  0.723
groEL
60 kDa chaperonin; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions (547 aa)
 
 
  0.700
gyrB
DNA gyrase subunit B; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Also able to catalyze the interconversion of other topological isomers of dsDNA rings, including catenanes and knotted rings. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner (798 aa)
   
 
  0.633
Your Current Organism:
Desulfovibrio vulgaris Hildenborough
NCBI taxonomy Id: 882
Other names: D. vulgaris str. Hildenborough, Desulfovibrio vulgaris (STRAIN HILDENBOROUGH), Desulfovibrio vulgaris ATCC 29579, Desulfovibrio vulgaris Hildenborough, Desulfovibrio vulgaris str. Hildenborough, Desulfovibrio vulgaris subsp. vulgaris (strain Hildenborough), Desulfovibrio vulgaris subsp. vulgaris ATCC 29579, Desulfovibrio vulgaris subsp. vulgaris str. Hildenborough
Server load: low (18%) [HD]