STRINGSTRING
lspA protein (Desulfovibrio vulgaris Hildenborough) - STRING interaction network
"lspA" - Lipoprotein signal peptidase in Desulfovibrio vulgaris Hildenborough
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
lspALipoprotein signal peptidase; This protein specifically catalyzes the removal of signal peptides from prolipoproteins; Belongs to the peptidase A8 family (165 aa)    
Predicted Functional Partners:
ileS
Isoleucine--tRNA ligase; Catalyzes the attachment of isoleucine to tRNA(Ile). As IleRS can inadvertently accommodate and process structurally similar amino acids such as valine, to avoid such errors it has two additional distinct tRNA(Ile)-dependent editing activities. One activity is designated as ’pretransfer’ editing and involves the hydrolysis of activated Val-AMP. The other activity is designated ’posttransfer’ editing and involves deacylation of mischarged Val-tRNA(Ile) (938 aa)
   
  0.917
DVU_1929
Uncharacterized protein; Identified by Glimmer2; putative (65 aa)
              0.882
DVU_1930
Cell division coordinator CpoB; Mediates coordination of peptidoglycan synthesis and outer membrane constriction during cell division (312 aa)
         
  0.802
ispH
4-hydroxy-3-methylbut-2-enyl diphosphate reductase; Catalyzes the conversion of 1-hydroxy-2-methyl-2-(E)- butenyl 4-diphosphate (HMBPP) into a mixture of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). Acts in the terminal step of the DOXP/MEP pathway for isoprenoid precursor biosynthesis (290 aa)
        0.755
lgt
Prolipoprotein diacylglyceryl transferase; Transfers the N-acyl diglyceride group on what will become the N-terminal cysteine of membrane lipoproteins (263 aa)
 
   
  0.702
DVU_1931
Iron-sulfur cluster-binding protein; Identified by match to protein family HMM PF00037 (147 aa)
              0.666
rluD/coaE
Dephospho-CoA kinase; Catalyzes the phosphorylation of the 3’-hydroxyl group of dephosphocoenzyme A to form coenzyme A; Belongs to the CoaE family (541 aa)
   
   
  0.659
ribD
Riboflavin biosynthesis protein RibD; Converts 2,5-diamino-6-(ribosylamino)-4(3h)-pyrimidinone 5’-phosphate into 5-amino-6-(ribosylamino)-2,4(1h,3h)- pyrimidinedione 5’-phosphate; In the C-terminal section; belongs to the HTP reductase family (377 aa)
         
  0.640
mraY
Phospho-N-acetylmuramoyl-pentapeptide-transferase; First step of the lipid cycle reactions in the biosynthesis of the cell wall peptidoglycan; Belongs to the glycosyltransferase 4 family. MraY subfamily (358 aa)
 
   
  0.616
cutE
Apolipoprotein N-acyltransferase; Transfers the fatty acyl group on membrane lipoproteins (502 aa)
 
   
  0.610
Your Current Organism:
Desulfovibrio vulgaris Hildenborough
NCBI taxonomy Id: 882
Other names: D. vulgaris str. Hildenborough, Desulfovibrio vulgaris (STRAIN HILDENBOROUGH), Desulfovibrio vulgaris ATCC 29579, Desulfovibrio vulgaris Hildenborough, Desulfovibrio vulgaris str. Hildenborough, Desulfovibrio vulgaris subsp. vulgaris (strain Hildenborough), Desulfovibrio vulgaris subsp. vulgaris ATCC 29579, Desulfovibrio vulgaris subsp. vulgaris str. Hildenborough
Server load: low (22%) [HD]