STRINGSTRING
bioA protein (Desulfovibrio vulgaris Hildenborough) - STRING interaction network
"bioA" - Adenosylmethionine-8-amino-7-oxononanoate aminotransferase in Desulfovibrio vulgaris Hildenborough
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
bioAAdenosylmethionine-8-amino-7-oxononanoate aminotransferase; Catalyzes the transfer of the alpha-amino group from S- adenosyl-L-methionine (SAM) to 7-keto-8-aminopelargonic acid (KAPA) to form 7,8-diaminopelargonic acid (DAPA). It is the only animotransferase known to utilize SAM as an amino donor; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. BioA subfamily (542 aa)    
Predicted Functional Partners:
bioD
ATP-dependent dethiobiotin synthetase BioD; Catalyzes a mechanistically unusual reaction, the ATP- dependent insertion of CO2 between the N7 and N8 nitrogen atoms of 7,8-diaminopelargonic acid (DAPA) to form an ureido ring (246 aa)
 
  0.998
bioB
Biotin synthase; Catalyzes the conversion of dethiobiotin (DTB) to biotin by the insertion of a sulfur atom into dethiobiotin via a radical- based mechanism; Belongs to the radical SAM superfamily. Biotin synthase family (310 aa)
   
  0.998
bioF
8-amino-7-oxononanoate synthase; Identified by similarity to SP-P22806 (424 aa)
 
  0.997
birA
Bifunctional ligase/repressor BirA; Acts both as a biotin--[acetyl-CoA-carboxylase] ligase and a repressor (330 aa)
 
     
  0.944
DVU_2560
Conserved domain protein; Identified by similarity to SP-O84537 (128 aa)
         
  0.862
DVU_2561
Oxidoreductase, short chain dehydrogenase/reductase family; Identified by match to protein family HMM PF00106 (342 aa)
              0.856
ribD
Riboflavin biosynthesis protein RibD; Converts 2,5-diamino-6-(ribosylamino)-4(3h)-pyrimidinone 5’-phosphate into 5-amino-6-(ribosylamino)-2,4(1h,3h)- pyrimidinedione 5’-phosphate; In the C-terminal section; belongs to the HTP reductase family (377 aa)
   
   
  0.677
DVU_2562
Acyl carrier protein, putative; Identified by similarity to SP-P20804 (135 aa)
         
  0.667
DVU_0101
Methlytransferase, UbiE/COQ5 family; Identified by match to protein family HMM PF01209 (508 aa)
   
   
  0.665
ribAB
Riboflavin biosynthesis protein RibBA; Catalyzes the conversion of D-ribulose 5-phosphate to formate and 3,4-dihydroxy-2-butanone 4-phosphate; In the N-terminal section; belongs to the DHBP synthase family (409 aa)
         
  0.585
Your Current Organism:
Desulfovibrio vulgaris Hildenborough
NCBI taxonomy Id: 882
Other names: D. vulgaris str. Hildenborough, Desulfovibrio vulgaris (STRAIN HILDENBOROUGH), Desulfovibrio vulgaris ATCC 29579, Desulfovibrio vulgaris Hildenborough, Desulfovibrio vulgaris str. Hildenborough, Desulfovibrio vulgaris subsp. vulgaris (strain Hildenborough), Desulfovibrio vulgaris subsp. vulgaris ATCC 29579, Desulfovibrio vulgaris subsp. vulgaris str. Hildenborough
Server load: low (22%) [HD]