STRINGSTRING
psd protein (Desulfovibrio vulgaris Hildenborough) - STRING interaction network
"psd" - Phosphatidylserine decarboxylase proenzyme in Desulfovibrio vulgaris Hildenborough
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
psdPhosphatidylserine decarboxylase proenzyme; Catalyzes the formation of phosphatidylethanolamine (PtdEtn) from phosphatidylserine (PtdSer) (217 aa)    
Predicted Functional Partners:
pssA
CDP-diacylglycerol--serine O-phosphatidyltransferase; Identified by match to protein family HMM PF01066; match to protein family HMM TIGR00473; Belongs to the CDP-alcohol phosphatidyltransferase class-I family (249 aa)
 
 
  0.992
cls
Cardiolipin synthetase; Catalyzes the reversible phosphatidyl group transfer from one phosphatidylglycerol molecule to another to form cardiolipin (CL) (diphosphatidylglycerol) and glycerol (481 aa)
     
  0.946
ribD
Riboflavin biosynthesis protein RibD; Converts 2,5-diamino-6-(ribosylamino)-4(3h)-pyrimidinone 5’-phosphate into 5-amino-6-(ribosylamino)-2,4(1h,3h)- pyrimidinedione 5’-phosphate; In the C-terminal section; belongs to the HTP reductase family (377 aa)
   
   
  0.698
pgsA
CDP-diacylglycerol--glycerol-3-phosphate 3-phosphatidyltransferase; Identified by match to protein family HMM PF01066; match to protein family HMM TIGR00560; Belongs to the CDP-alcohol phosphatidyltransferase class-I family (185 aa)
   
 
  0.628
DVU_2978
Hydrolase, haloacid dehalogenase-like family; Identified by similarity to OMNI-NTL02EC4785; match to protein family HMM PF00702 (210 aa)
              0.575
leuA
2-isopropylmalate synthase; Catalyzes the condensation of the acetyl group of acetyl-CoA with 3-methyl-2-oxobutanoate (2-oxoisovalerate) to form 3-carboxy-3-hydroxy-4-methylpentanoate (2-isopropylmalate); Belongs to the alpha-IPM synthase/homocitrate synthase family. LeuA type 1 subfamily (509 aa)
   
        0.560
ispD
Bifunctional enzyme IspD/IspF; Bifunctional enzyme that catalyzes the formation of 4- diphosphocytidyl-2-C-methyl-D-erythritol from CTP and 2-C-methyl- D-erythritol 4-phosphate (MEP) (IspD), and catalyzes the conversion of 4-diphosphocytidyl-2-C-methyl-D-erythritol 2- phosphate (CDP-ME2P) to 2-C-methyl-D-erythritol 2,4- cyclodiphosphate (ME-CPP) with a corresponding release of cytidine 5-monophosphate (CMP) (IspF); In the N-terminal section; belongs to the IspD/TarI cytidylyltransferase family. IspD subfamily (395 aa)
   
   
  0.555
leuC
3-isopropylmalate dehydratase large subunit; Catalyzes the isomerization between 2-isopropylmalate and 3-isopropylmalate, via the formation of 2-isopropylmaleate; Belongs to the aconitase/IPM isomerase family. LeuC type 2 subfamily (419 aa)
              0.544
leuB
3-isopropylmalate dehydrogenase; Catalyzes the oxidation of 3-carboxy-2-hydroxy-4- methylpentanoate (3-isopropylmalate) to 3-carboxy-4-methyl-2- oxopentanoate. The product decarboxylates to 4-methyl-2 oxopentanoate; Belongs to the isocitrate and isopropylmalate dehydrogenases family. LeuB type 1 subfamily (357 aa)
   
        0.510
nnrD
Multifunctional fusion protein; Bifunctional enzyme that catalyzes the epimerization of the S- and R-forms of NAD(P)HX and the dehydration of the S-form of NAD(P)HX at the expense of ADP, which is converted to AMP. This allows the repair of both epimers of NAD(P)HX, a damaged form of NAD(P)H that is a result of enzymatic or heat-dependent hydration; Belongs to the NnrD/CARKD family (574 aa)
   
        0.486
Your Current Organism:
Desulfovibrio vulgaris Hildenborough
NCBI taxonomy Id: 882
Other names: D. vulgaris str. Hildenborough, Desulfovibrio vulgaris (STRAIN HILDENBOROUGH), Desulfovibrio vulgaris ATCC 29579, Desulfovibrio vulgaris Hildenborough, Desulfovibrio vulgaris str. Hildenborough, Desulfovibrio vulgaris subsp. vulgaris (strain Hildenborough), Desulfovibrio vulgaris subsp. vulgaris ATCC 29579, Desulfovibrio vulgaris subsp. vulgaris str. Hildenborough
Server load: low (15%) [HD]