STRINGSTRING
hflX protein (Desulfovibrio vulgaris Hildenborough) - STRING interaction network
"hflX" - GTPase HflX in Desulfovibrio vulgaris Hildenborough
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
hflXGTPase HflX; GTPase that associates with the 50S ribosomal subunit and may have a role during protein synthesis or ribosome biogenesis (547 aa)    
Predicted Functional Partners:
miaA
tRNA dimethylallyltransferase; Catalyzes the transfer of a dimethylallyl group onto the adenine at position 37 in tRNAs that read codons beginning with uridine, leading to the formation of N6-(dimethylallyl)adenosine (i(6)A); Belongs to the IPP transferase family (309 aa)
 
   
  0.891
DVU_0684
Protein HflK; HflC and HflK could encode or regulate a protease (378 aa)
 
   
  0.885
DVU_0683
Protein HflC; HflC and HflK could regulate a protease (283 aa)
 
   
  0.882
nnrD
Multifunctional fusion protein; Bifunctional enzyme that catalyzes the epimerization of the S- and R-forms of NAD(P)HX and the dehydration of the S-form of NAD(P)HX at the expense of ADP, which is converted to AMP. This allows the repair of both epimers of NAD(P)HX, a damaged form of NAD(P)H that is a result of enzymatic or heat-dependent hydration; Belongs to the NnrD/CARKD family (574 aa)
   
   
  0.772
rplI
50S ribosomal protein L9; Binds to the 23S rRNA (167 aa)
   
      0.668
rplX
50S ribosomal protein L24; One of two assembly initiator proteins, it binds directly to the 5’-end of the 23S rRNA, where it nucleates assembly of the 50S subunit (107 aa)
   
      0.652
rplR
50S ribosomal protein L18; This is one of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance (119 aa)
   
 
      0.639
rplD
50S ribosomal protein L4; One of the primary rRNA binding proteins, this protein initially binds near the 5’-end of the 23S rRNA. It is important during the early stages of 50S assembly. It makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit and ribosome (206 aa)
     
 
  0.630
rplC
50S ribosomal protein L3; One of the primary rRNA binding proteins, it binds directly near the 3’-end of the 23S rRNA, where it nucleates assembly of the 50S subunit (209 aa)
     
 
  0.627
rplU
50S ribosomal protein L21; This protein binds to 23S rRNA in the presence of protein L20 (102 aa)
     
 
  0.622
Your Current Organism:
Desulfovibrio vulgaris Hildenborough
NCBI taxonomy Id: 882
Other names: D. vulgaris str. Hildenborough, Desulfovibrio vulgaris (STRAIN HILDENBOROUGH), Desulfovibrio vulgaris ATCC 29579, Desulfovibrio vulgaris Hildenborough, Desulfovibrio vulgaris str. Hildenborough, Desulfovibrio vulgaris subsp. vulgaris (strain Hildenborough), Desulfovibrio vulgaris subsp. vulgaris ATCC 29579, Desulfovibrio vulgaris subsp. vulgaris str. Hildenborough
Server load: low (23%) [HD]