STRINGSTRING
def protein (Desulfovibrio vulgaris Hildenborough) - STRING interaction network
"def" - Peptide deformylase in Desulfovibrio vulgaris Hildenborough
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
defPeptide deformylase; Removes the formyl group from the N-terminal Met of newly synthesized proteins. Requires at least a dipeptide for an efficient rate of reaction. N-terminal L-methionine is a prerequisite for activity but the enzyme has broad specificity at other positions (171 aa)    
Predicted Functional Partners:
rplT
50S ribosomal protein L20; Binds directly to 23S ribosomal RNA and is necessary for the in vitro assembly process of the 50S ribosomal subunit. It is not involved in the protein synthesizing functions of that subunit (117 aa)
 
 
  0.993
fmt
Methionyl-tRNA formyltransferase; Attaches a formyl group to the free amino group of methionyl-tRNA(fMet). The formyl group appears to play a dual role in the initiator identity of N-formylmethionyl-tRNA by promoting its recognition by IF2 and preventing the misappropriation of this tRNA by the elongation apparatus (330 aa)
 
  0.991
rplX
50S ribosomal protein L24; One of two assembly initiator proteins, it binds directly to the 5’-end of the 23S rRNA, where it nucleates assembly of the 50S subunit (107 aa)
   
      0.990
rplD
50S ribosomal protein L4; One of the primary rRNA binding proteins, this protein initially binds near the 5’-end of the 23S rRNA. It is important during the early stages of 50S assembly. It makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit and ribosome (206 aa)
   
 
  0.985
rpsI
30S ribosomal protein S9; Identified by match to protein family HMM PF00380; Belongs to the universal ribosomal protein uS9 family (130 aa)
   
 
  0.985
rpsU
30S ribosomal protein S21; Identified by match to protein family HMM PF01165; match to protein family HMM TIGR00030; Belongs to the bacterial ribosomal protein bS21 family (70 aa)
     
      0.984
rpmI
50S ribosomal protein L35; Identified by match to protein family HMM PF01632; match to protein family HMM TIGR00001; Belongs to the bacterial ribosomal protein bL35 family (65 aa)
   
      0.984
rpsL
30S ribosomal protein S12; With S4 and S5 plays an important role in translational accuracy (123 aa)
     
 
  0.984
rpsC
30S ribosomal protein S3; Binds the lower part of the 30S subunit head. Binds mRNA in the 70S ribosome, positioning it for translation (212 aa)
   
 
  0.984
rplQ
50S ribosomal protein L17; Identified by match to protein family HMM PF01196; match to protein family HMM TIGR00059 (133 aa)
     
      0.984
Your Current Organism:
Desulfovibrio vulgaris Hildenborough
NCBI taxonomy Id: 882
Other names: D. vulgaris str. Hildenborough, Desulfovibrio vulgaris (STRAIN HILDENBOROUGH), Desulfovibrio vulgaris ATCC 29579, Desulfovibrio vulgaris Hildenborough, Desulfovibrio vulgaris str. Hildenborough, Desulfovibrio vulgaris subsp. vulgaris (strain Hildenborough), Desulfovibrio vulgaris subsp. vulgaris ATCC 29579, Desulfovibrio vulgaris subsp. vulgaris str. Hildenborough
Server load: low (11%) [HD]