node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
SDZ74633.1 | SDZ77084.1 | SAMN05444370_101133 | SAMN05444370_101265 | Putative phosphatase. | Sulfate permease, SulP family. | 0.898 |
SDZ74633.1 | SDZ92684.1 | SAMN05444370_101133 | SAMN05444370_102211 | Putative phosphatase. | Peptidylprolyl isomerase; PPIases accelerate the folding of proteins. It catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides; Belongs to the cyclophilin-type PPIase family. | 0.904 |
SDZ74633.1 | SEA21435.1 | SAMN05444370_101133 | SAMN05444370_103484 | Putative phosphatase. | NADH dehydrogenase subunit M. | 0.968 |
SDZ74633.1 | nuoA | SAMN05444370_101133 | SAMN05444370_103500 | Putative phosphatase. | NADH dehydrogenase subunit A; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family. | 0.919 |
SDZ74633.1 | nuoB | SAMN05444370_101133 | SAMN05444370_103499 | Putative phosphatase. | NADH dehydrogenase subunit B; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. | 0.919 |
SDZ74633.1 | nuoC | SAMN05444370_101133 | SAMN05444370_103498 | Putative phosphatase. | NADH dehydrogenase subunit C; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 30 kDa subunit family. | 0.904 |
SDZ74633.1 | nuoD | SAMN05444370_101133 | SAMN05444370_103497 | Putative phosphatase. | NADH dehydrogenase subunit D; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 49 kDa subunit family. | 0.916 |
SDZ74633.1 | nuoH | SAMN05444370_101133 | SAMN05444370_103489 | Putative phosphatase. | NADH dehydrogenase subunit H; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone. | 0.919 |
SDZ74633.1 | nuoI | SAMN05444370_101133 | SAMN05444370_103488 | Putative phosphatase. | NADH dehydrogenase subunit I; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. | 0.916 |
SDZ74633.1 | nuoN | SAMN05444370_101133 | SAMN05444370_103483 | Putative phosphatase. | NADH dehydrogenase subunit N; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 2 family. | 0.900 |
SDZ77084.1 | SDZ74633.1 | SAMN05444370_101265 | SAMN05444370_101133 | Sulfate permease, SulP family. | Putative phosphatase. | 0.898 |
SDZ77084.1 | SEA21435.1 | SAMN05444370_101265 | SAMN05444370_103484 | Sulfate permease, SulP family. | NADH dehydrogenase subunit M. | 0.897 |
SDZ92684.1 | SDZ74633.1 | SAMN05444370_102211 | SAMN05444370_101133 | Peptidylprolyl isomerase; PPIases accelerate the folding of proteins. It catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides; Belongs to the cyclophilin-type PPIase family. | Putative phosphatase. | 0.904 |
SDZ92684.1 | SEA21435.1 | SAMN05444370_102211 | SAMN05444370_103484 | Peptidylprolyl isomerase; PPIases accelerate the folding of proteins. It catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides; Belongs to the cyclophilin-type PPIase family. | NADH dehydrogenase subunit M. | 0.928 |
SDZ92684.1 | nuoA | SAMN05444370_102211 | SAMN05444370_103500 | Peptidylprolyl isomerase; PPIases accelerate the folding of proteins. It catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides; Belongs to the cyclophilin-type PPIase family. | NADH dehydrogenase subunit A; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family. | 0.906 |
SDZ92684.1 | nuoB | SAMN05444370_102211 | SAMN05444370_103499 | Peptidylprolyl isomerase; PPIases accelerate the folding of proteins. It catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides; Belongs to the cyclophilin-type PPIase family. | NADH dehydrogenase subunit B; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. | 0.912 |
SDZ92684.1 | nuoC | SAMN05444370_102211 | SAMN05444370_103498 | Peptidylprolyl isomerase; PPIases accelerate the folding of proteins. It catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides; Belongs to the cyclophilin-type PPIase family. | NADH dehydrogenase subunit C; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 30 kDa subunit family. | 0.903 |
SDZ92684.1 | nuoD | SAMN05444370_102211 | SAMN05444370_103497 | Peptidylprolyl isomerase; PPIases accelerate the folding of proteins. It catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides; Belongs to the cyclophilin-type PPIase family. | NADH dehydrogenase subunit D; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 49 kDa subunit family. | 0.907 |
SDZ92684.1 | nuoH | SAMN05444370_102211 | SAMN05444370_103489 | Peptidylprolyl isomerase; PPIases accelerate the folding of proteins. It catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides; Belongs to the cyclophilin-type PPIase family. | NADH dehydrogenase subunit H; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone. | 0.912 |
SDZ92684.1 | nuoI | SAMN05444370_102211 | SAMN05444370_103488 | Peptidylprolyl isomerase; PPIases accelerate the folding of proteins. It catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides; Belongs to the cyclophilin-type PPIase family. | NADH dehydrogenase subunit I; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. | 0.911 |