STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
lexARepressor LexA; Represses a number of genes involved in the response to DNA damage (SOS response), including recA and lexA. In the presence of single-stranded DNA, RecA interacts with LexA causing an autocatalytic cleavage which disrupts the DNA-binding part of LexA, leading to derepression of the SOS regulon and eventually DNA repair. (218 aa)    
Predicted Functional Partners:
recA
DNA recombination/repair protein RecA; Can catalyze the hydrolysis of ATP in the presence of single- stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage; Belongs to the RecA family.
  
 
 0.980
DinB2
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.967
DnaE1
DNA polymerase III subunit alpha; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
   
 0.847
AQU99553.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
     0.835
dinB
DNA polymerase IV; Poorly processive, error-prone DNA polymerase involved in untargeted mutagenesis. Copies undamaged DNA at stalled replication forks, which arise in vivo from mismatched or misaligned primer ends. These misaligned primers can be extended by PolIV. Exhibits no 3'-5' exonuclease (proofreading) activity. May be involved in translesional synthesis, in conjunction with the beta clamp from PolIII.
 
 
 0.831
RecN
DNA repair protein RecN; May be involved in recombinational repair of damaged DNA.
  
  
 0.785
YebG
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
  
 0.773
recO
DNA repair protein RecO; Involved in DNA repair and RecF pathway recombination.
 
   
 0.537
birA
biotin--[acetyl-CoA-carboxylase] ligase; Acts both as a biotin--[acetyl-CoA-carboxylase] ligase and a repressor; Belongs to the biotin--protein ligase family.
  
   
 0.533
polA
DNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 5'-3' exonuclease activity; Belongs to the DNA polymerase type-A family.
  
  
 0.505
Your Current Organism:
Desulfococcus multivorans
NCBI taxonomy Id: 897
Other names: ATCC 33890, D. multivorans, DSM 2059, strain 1be1
Server load: low (18%) [HD]