STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ASZ78_002147ATP synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. (506 aa)    
Predicted Functional Partners:
ASZ78_012737
ATP synthase subunit beta; Produces ATP from ADP in the presence of a proton gradient across the membrane.
 
0.999
ASZ78_006279
ATP-synt_DE_N domain-containing protein.
  
 0.999
ASZ78_004972
ATP synthase subunit gamma.
 
 0.999
ASZ78_004049
Uncharacterized protein.
   
 0.998
ASZ78_014284
Uncharacterized protein.
  
 0.998
ASZ78_006435
ATP synthase subunit d, mitochondrial; Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the cent [...]
   
 0.997
ASZ78_017020
ATP synthase-coupling factor 6, mitochondrial; Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain; Belongs to the eukaryotic ATPase subunit F6 family.
   
 0.991
ASZ78_009466
ATP synthase subunit; Mitochondrial membrane ATP synthase (F1F0 ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F1 - containing the extramembraneous catalytic core, and F0 - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F1 is coupled via a rotary mechanism of the central stalk subunits to proto [...]
   
 0.989
ASZ78_002842
ATP-synt_C domain-containing protein; Belongs to the ATPase C chain family.
  
 0.988
ASZ78_007803
V-type proton ATPase proteolipid subunit; Proton-conducting pore forming subunit of the membrane integral V0 complex of vacuolar ATPase. V-ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells.
  
 0.988
Your Current Organism:
Callipepla squamata
NCBI taxonomy Id: 9009
Other names: C. squamata, scaled quail
Server load: low (12%) [HD]