node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
NH26_11970 | NH26_14985 | NH26_11970 | NH26_14985 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.995 |
NH26_11970 | atpA | NH26_11970 | NH26_10780 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | F0F1 ATP synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. | 0.999 |
NH26_11970 | atpB | NH26_11970 | NH26_10800 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | ATP synthase F0 subunit A; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. Belongs to the ATPase A chain family. | 0.999 |
NH26_11970 | atpD | NH26_11970 | NH26_11965 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | F0F1 ATP synthase subunit beta; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits. | 0.999 |
NH26_11970 | atpE | NH26_11970 | NH26_10795 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | ATP synthase F0 subunit C; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. | 0.999 |
NH26_11970 | atpF | NH26_11970 | NH26_10790 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | ATP synthase F0 subunit B; Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0); Belongs to the ATPase B chain family. | 0.999 |
NH26_11970 | atpG | NH26_11970 | NH26_10775 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | ATP synthase F1 subunit gamma; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex. | 0.999 |
NH26_11970 | atpH | NH26_11970 | NH26_10785 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | ATP synthase F1 subunit delta; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. | 0.999 |
NH26_11970 | rplB | NH26_11970 | NH26_16250 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 50S ribosomal protein L2; One of the primary rRNA binding proteins. Required for association of the 30S and 50S subunits to form the 70S ribosome, for tRNA binding and peptide bond formation. It has been suggested to have peptidyltransferase activity; this is somewhat controversial. Makes several contacts with the 16S rRNA in the 70S ribosome. Belongs to the universal ribosomal protein uL2 family. | 0.719 |
NH26_14985 | NH26_11970 | NH26_14985 | NH26_11970 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.995 |
NH26_14985 | atpA | NH26_14985 | NH26_10780 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | F0F1 ATP synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. | 0.995 |
NH26_14985 | atpB | NH26_14985 | NH26_10800 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | ATP synthase F0 subunit A; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. Belongs to the ATPase A chain family. | 0.988 |
NH26_14985 | atpD | NH26_14985 | NH26_11965 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | F0F1 ATP synthase subunit beta; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits. | 0.994 |
NH26_14985 | atpE | NH26_14985 | NH26_10795 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | ATP synthase F0 subunit C; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. | 0.990 |
NH26_14985 | atpF | NH26_14985 | NH26_10790 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | ATP synthase F0 subunit B; Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0); Belongs to the ATPase B chain family. | 0.974 |
NH26_14985 | atpH | NH26_14985 | NH26_10785 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | ATP synthase F1 subunit delta; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. | 0.993 |
NH26_14985 | rplB | NH26_14985 | NH26_16250 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 50S ribosomal protein L2; One of the primary rRNA binding proteins. Required for association of the 30S and 50S subunits to form the 70S ribosome, for tRNA binding and peptide bond formation. It has been suggested to have peptidyltransferase activity; this is somewhat controversial. Makes several contacts with the 16S rRNA in the 70S ribosome. Belongs to the universal ribosomal protein uL2 family. | 0.681 |
NH26_14985 | rplD | NH26_14985 | NH26_16240 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 50S ribosomal protein L4; Forms part of the polypeptide exit tunnel. | 0.713 |
atpA | NH26_11970 | NH26_10780 | NH26_11970 | F0F1 ATP synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.999 |
atpA | NH26_14985 | NH26_10780 | NH26_14985 | F0F1 ATP synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.995 |