node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
NH26_02795 | NH26_02800 | NH26_02795 | NH26_02800 | Cytochrome oxidase subunit III; Derived by automated computational analysis using gene prediction method: Protein Homology. | Cytochrome oxidase subunit III; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.995 |
NH26_02795 | atpB | NH26_02795 | NH26_10800 | Cytochrome oxidase subunit III; Derived by automated computational analysis using gene prediction method: Protein Homology. | ATP synthase F0 subunit A; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. Belongs to the ATPase A chain family. | 0.962 |
NH26_02800 | NH26_02795 | NH26_02800 | NH26_02795 | Cytochrome oxidase subunit III; Derived by automated computational analysis using gene prediction method: Protein Homology. | Cytochrome oxidase subunit III; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.995 |
NH26_02800 | atpB | NH26_02800 | NH26_10800 | Cytochrome oxidase subunit III; Derived by automated computational analysis using gene prediction method: Protein Homology. | ATP synthase F0 subunit A; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. Belongs to the ATPase A chain family. | 0.957 |
NH26_11970 | NH26_14985 | NH26_11970 | NH26_14985 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.995 |
NH26_11970 | atpA | NH26_11970 | NH26_10780 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | F0F1 ATP synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. | 0.999 |
NH26_11970 | atpB | NH26_11970 | NH26_10800 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | ATP synthase F0 subunit A; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. Belongs to the ATPase A chain family. | 0.999 |
NH26_11970 | atpD | NH26_11970 | NH26_11965 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | F0F1 ATP synthase subunit beta; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits. | 0.999 |
NH26_11970 | atpE | NH26_11970 | NH26_10795 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | ATP synthase F0 subunit C; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. | 0.999 |
NH26_11970 | atpF | NH26_11970 | NH26_10790 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | ATP synthase F0 subunit B; Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0); Belongs to the ATPase B chain family. | 0.999 |
NH26_11970 | atpG | NH26_11970 | NH26_10775 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | ATP synthase F1 subunit gamma; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex. | 0.999 |
NH26_11970 | atpH | NH26_11970 | NH26_10785 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | ATP synthase F1 subunit delta; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. | 0.999 |
NH26_14985 | NH26_11970 | NH26_14985 | NH26_11970 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.995 |
NH26_14985 | atpA | NH26_14985 | NH26_10780 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | F0F1 ATP synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. | 0.995 |
NH26_14985 | atpB | NH26_14985 | NH26_10800 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | ATP synthase F0 subunit A; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. Belongs to the ATPase A chain family. | 0.988 |
NH26_14985 | atpD | NH26_14985 | NH26_11965 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | F0F1 ATP synthase subunit beta; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits. | 0.994 |
NH26_14985 | atpE | NH26_14985 | NH26_10795 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | ATP synthase F0 subunit C; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. | 0.990 |
NH26_14985 | atpF | NH26_14985 | NH26_10790 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | ATP synthase F0 subunit B; Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0); Belongs to the ATPase B chain family. | 0.974 |
NH26_14985 | atpH | NH26_14985 | NH26_10785 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | ATP synthase F1 subunit delta; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. | 0.993 |
atpA | NH26_11970 | NH26_10780 | NH26_11970 | F0F1 ATP synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.999 |