node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
AIK95954.1 | AIK95955.1 | ID47_03185 | ID47_03190 | Cytochrome d terminal oxidase subunit 1; Part of the aerobic respiratory chain; catalyzes the ubiquinol to ubiquinone; Derived by automated computational analysis using gene prediction method: Protein Homology. | Cytochrome d ubiquinol oxidase subunit 2; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.999 |
AIK95954.1 | AIK95956.1 | ID47_03185 | ID47_03195 | Cytochrome d terminal oxidase subunit 1; Part of the aerobic respiratory chain; catalyzes the ubiquinol to ubiquinone; Derived by automated computational analysis using gene prediction method: Protein Homology. | Membrane protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.983 |
AIK95954.1 | AIK95969.1 | ID47_03185 | ID47_03265 | Cytochrome d terminal oxidase subunit 1; Part of the aerobic respiratory chain; catalyzes the ubiquinol to ubiquinone; Derived by automated computational analysis using gene prediction method: Protein Homology. | NADH dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.584 |
AIK95954.1 | AIK95970.1 | ID47_03185 | ID47_03270 | Cytochrome d terminal oxidase subunit 1; Part of the aerobic respiratory chain; catalyzes the ubiquinol to ubiquinone; Derived by automated computational analysis using gene prediction method: Protein Homology. | NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Belongs to the complex I 51 kDa subunit family. | 0.582 |
AIK95954.1 | nuoA | ID47_03185 | ID47_03245 | Cytochrome d terminal oxidase subunit 1; Part of the aerobic respiratory chain; catalyzes the ubiquinol to ubiquinone; Derived by automated computational analysis using gene prediction method: Protein Homology. | NADH:ubiquinone oxidoreductase subunit A; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family. | 0.603 |
AIK95954.1 | nuoB | ID47_03185 | ID47_03250 | Cytochrome d terminal oxidase subunit 1; Part of the aerobic respiratory chain; catalyzes the ubiquinol to ubiquinone; Derived by automated computational analysis using gene prediction method: Protein Homology. | NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. | 0.527 |
AIK95954.1 | nuoC | ID47_03185 | ID47_03255 | Cytochrome d terminal oxidase subunit 1; Part of the aerobic respiratory chain; catalyzes the ubiquinol to ubiquinone; Derived by automated computational analysis using gene prediction method: Protein Homology. | NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 30 kDa subunit family. | 0.532 |
AIK95954.1 | nuoD | ID47_03185 | ID47_03260 | Cytochrome d terminal oxidase subunit 1; Part of the aerobic respiratory chain; catalyzes the ubiquinol to ubiquinone; Derived by automated computational analysis using gene prediction method: Protein Homology. | NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 49 kDa subunit family. | 0.510 |
AIK95954.1 | nuoH | ID47_03185 | ID47_03280 | Cytochrome d terminal oxidase subunit 1; Part of the aerobic respiratory chain; catalyzes the ubiquinol to ubiquinone; Derived by automated computational analysis using gene prediction method: Protein Homology. | NADH:ubiquinone oxidoreductase subunit H; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone. | 0.624 |
AIK95954.1 | nuoI | ID47_03185 | ID47_03285 | Cytochrome d terminal oxidase subunit 1; Part of the aerobic respiratory chain; catalyzes the ubiquinol to ubiquinone; Derived by automated computational analysis using gene prediction method: Protein Homology. | NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. | 0.583 |
AIK95955.1 | AIK95954.1 | ID47_03190 | ID47_03185 | Cytochrome d ubiquinol oxidase subunit 2; Derived by automated computational analysis using gene prediction method: Protein Homology. | Cytochrome d terminal oxidase subunit 1; Part of the aerobic respiratory chain; catalyzes the ubiquinol to ubiquinone; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.999 |
AIK95955.1 | AIK95956.1 | ID47_03190 | ID47_03195 | Cytochrome d ubiquinol oxidase subunit 2; Derived by automated computational analysis using gene prediction method: Protein Homology. | Membrane protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.980 |
AIK95955.1 | AIK95969.1 | ID47_03190 | ID47_03265 | Cytochrome d ubiquinol oxidase subunit 2; Derived by automated computational analysis using gene prediction method: Protein Homology. | NADH dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.584 |
AIK95955.1 | AIK95970.1 | ID47_03190 | ID47_03270 | Cytochrome d ubiquinol oxidase subunit 2; Derived by automated computational analysis using gene prediction method: Protein Homology. | NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Belongs to the complex I 51 kDa subunit family. | 0.571 |
AIK95955.1 | nuoA | ID47_03190 | ID47_03245 | Cytochrome d ubiquinol oxidase subunit 2; Derived by automated computational analysis using gene prediction method: Protein Homology. | NADH:ubiquinone oxidoreductase subunit A; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family. | 0.584 |
AIK95955.1 | nuoB | ID47_03190 | ID47_03250 | Cytochrome d ubiquinol oxidase subunit 2; Derived by automated computational analysis using gene prediction method: Protein Homology. | NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. | 0.527 |
AIK95955.1 | nuoC | ID47_03190 | ID47_03255 | Cytochrome d ubiquinol oxidase subunit 2; Derived by automated computational analysis using gene prediction method: Protein Homology. | NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 30 kDa subunit family. | 0.574 |
AIK95955.1 | nuoD | ID47_03190 | ID47_03260 | Cytochrome d ubiquinol oxidase subunit 2; Derived by automated computational analysis using gene prediction method: Protein Homology. | NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 49 kDa subunit family. | 0.527 |
AIK95955.1 | nuoH | ID47_03190 | ID47_03280 | Cytochrome d ubiquinol oxidase subunit 2; Derived by automated computational analysis using gene prediction method: Protein Homology. | NADH:ubiquinone oxidoreductase subunit H; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone. | 0.619 |
AIK95955.1 | nuoI | ID47_03190 | ID47_03285 | Cytochrome d ubiquinol oxidase subunit 2; Derived by automated computational analysis using gene prediction method: Protein Homology. | NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. | 0.583 |