STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
nqrENADH:ubiquinone oxidoreductase, Na(+)-translocating, E subunit; NQR complex catalyzes the reduction of ubiquinone-1 to ubiquinol by two successive reactions, coupled with the transport of Na(+) ions from the cytoplasm to the periplasm. NqrA to NqrE are probably involved in the second step, the conversion of ubisemiquinone to ubiquinol; Belongs to the NqrDE/RnfAE family. (205 aa)    
Predicted Functional Partners:
nqrD
NADH:ubiquinone oxidoreductase, Na(+)-translocating, D subunit; NQR complex catalyzes the reduction of ubiquinone-1 to ubiquinol by two successive reactions, coupled with the transport of Na(+) ions from the cytoplasm to the periplasm. NqrA to NqrE are probably involved in the second step, the conversion of ubisemiquinone to ubiquinol; Belongs to the NqrDE/RnfAE family.
 
 0.999
nqrF
NADH:ubiquinone oxidoreductase, Na(+)-translocating, F subunit; NQR complex catalyzes the reduction of ubiquinone-1 to ubiquinol by two successive reactions, coupled with the transport of Na(+) ions from the cytoplasm to the periplasm. The first step is catalyzed by NqrF, which accepts electrons from NADH and reduces ubiquinone-1 to ubisemiquinone by a one-electron transfer pathway.
 
 0.999
nqrA
NADH:ubiquinone oxidoreductase, Na(+)-translocating, A subunit; NQR complex catalyzes the reduction of ubiquinone-1 to ubiquinol by two successive reactions, coupled with the transport of Na(+) ions from the cytoplasm to the periplasm. NqrA to NqrE are probably involved in the second step, the conversion of ubisemiquinone to ubiquinol.
 
 0.998
nqrB
NADH:ubiquinone oxidoreductase, Na(+)-translocating, B subunit; NQR complex catalyzes the reduction of ubiquinone-1 to ubiquinol by two successive reactions, coupled with the transport of Na(+) ions from the cytoplasm to the periplasm. NqrA to NqrE are probably involved in the second step, the conversion of ubisemiquinone to ubiquinol.
 
 0.998
nqrC
NADH:ubiquinone oxidoreductase, Na(+)-translocating, C subunit; NQR complex catalyzes the reduction of ubiquinone-1 to ubiquinol by two successive reactions, coupled with the transport of Na(+) ions from the cytoplasm to the periplasm. NqrA to NqrE are probably involved in the second step, the conversion of ubisemiquinone to ubiquinol.
 
 0.998
AEV32053.1
Membrane-associated lipoprotein involved in thiamine biosynthesis; Flavin transferase that catalyzes the transfer of the FMN moiety of FAD and its covalent binding to the hydroxyl group of a threonine residue in a target flavoprotein.
 
  
 0.815
AEV31360.1
Membrane-associated lipoprotein involved in thiamine biosynthesis; Flavin transferase that catalyzes the transfer of the FMN moiety of FAD and its covalent binding to the hydroxyl group of a threonine residue in a target flavoprotein.
 
  
 0.694
AEV34350.1
Hypothetical protein.
       0.519
Your Current Organism:
Owenweeksia hongkongensis
NCBI taxonomy Id: 926562
Other names: Cryomorphaceae bacterium UST20020801, O. hongkongensis DSM 17368, Owenweeksia hongkongensis DSM 17368, Owenweeksia hongkongensis UST20020801
Server load: low (14%) [HD]