STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
gatDglutamyl-tRNA(Gln) amidotransferase subunit D; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in organisms which lack glutaminyl-tRNA synthetase. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu- tRNA(Gln). The GatDE system is specific for glutamate and does not act on aspartate. (442 aa)    
Predicted Functional Partners:
gatE
glutamyl-tRNA(Gln) amidotransferase subunit E; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in organisms which lack glutaminyl-tRNA synthetase. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu- tRNA(Gln). The GatDE system is specific for glutamate and does not act on aspartate.
 
 0.999
gatB
aspartyl/glutamyl-tRNA amidotransferase subunit B; Allows the formation of correctly charged Asn-tRNA(Asn) or Gln-tRNA(Gln) through the transamidation of misacylated Asp-tRNA(Asn) or Glu-tRNA(Gln) in organisms which lack either or both of asparaginyl- tRNA or glutaminyl-tRNA synthetases. The reaction takes place in the presence of glutamine and ATP through an activated phospho-Asp- tRNA(Asn) or phospho-Glu-tRNA(Gln); Belongs to the GatB/GatE family. GatB subfamily.
    
 0.930
gatA
glutamyl-tRNA amidotransferase subunit A; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in organisms which lack glutaminyl-tRNA synthetase. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu- tRNA(Gln).
    
 0.922
AIC15840.1
Amidase.
    
 0.922
gatC
aspartyl/glutamyl-tRNA amidotransferase subunit C.
    
  0.915
fumC
Putative fumarate hydratase; Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; enzyme.
 
  
 0.829
AIC15560.1
Hypothetical protein.
       0.697
AIC15557.1
Hypothetical protein; No homology to any previously reported sequences.
       0.542
aspC
Aspartate aminotransferase; Function of strongly homologous gene; enzyme.
     
 0.514
guaA
GMP synthase; Catalyzes the synthesis of GMP from XMP.
  
    0.511
Your Current Organism:
Nitrososphaera viennensis
NCBI taxonomy Id: 926571
Other names: Candidatus Nitrososphaera sp. EN76, N. viennensis EN76, Nitrososphaera viennensis EN76, Nitrososphaera viennensis str. EN76, Nitrososphaera viennensis strain EN76
Server load: low (26%) [HD]