STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
APR54216.1Phosphopantetheine-binding protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (81 aa)    
Predicted Functional Partners:
APR53232.1
[acyl-carrier-protein] S-malonyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.978
nuoC
NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 30 kDa subunit family.
   
 0.970
rplU
50S ribosomal protein L21; This protein binds to 23S rRNA in the presence of protein L20; Belongs to the bacterial ribosomal protein bL21 family.
  
 
 0.968
APR53873.1
Cytochrome c oxidase subunit II; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
 
 0.956
rpmF
50S ribosomal protein L32; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bL32 family.
  
 
 0.946
nuoI
NADH-quinone oxidoreductase subunit I; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient.
   
 0.944
nuoB
NADH-quinone oxidoreductase subunit B; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient.
   
 0.942
rplM
50S ribosomal protein L13; This protein is one of the early assembly proteins of the 50S ribosomal subunit, although it is not seen to bind rRNA by itself. It is important during the early stages of 50S assembly.
   
   0.925
APR52931.1
NAD(P)H-dependent oxidoreductase subunit E; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
 0.917
nuoD
NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 49 kDa subunit family.
   
 0.915
Your Current Organism:
Sphingomonas koreensis
NCBI taxonomy Id: 93064
Other names: DSM 15582, IFO 16723, JCM 11456, KCCM 41069, KCTC 2882, NBRC 16723, S. koreensis, Sphingomonas koreensis Lee et al. 2001, Sphingomonas sp. ABOJT, Sphingomonas sp. ABOJU, Sphingomonas sp. ABOJV, Sphingomonas sp. JSS-26, Sphingomonas sp. JSS-28, Sphingomonas sp. JSS26, Sphingomonas sp. JSS28, strain JSS26
Server load: low (8%) [HD]