STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
moeB_1tRNA threonylcarbamoyladenosine dehydratase; Derived by automated computational analysis using gene prediction method: Protein Homology. (278 aa)    
Predicted Functional Partners:
moeB_2
Molybdopterin biosynthesis protein MoeB; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
0.683
thiG
Thiazole synthase; Catalyzes the rearrangement of 1-deoxy-D-xylulose 5-phosphate (DXP) to produce the thiazole phosphate moiety of thiamine. Sulfur is provided by the thiocarboxylate moiety of the carrier protein ThiS. In vitro, sulfur can be provided by H(2)S.
 
 
  0.574
ANC46998.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
       0.564
thiS
Thiamine biosynthesis protein ThiS; With ThiF, ThiG, and ThiO catalyzes the formation of the thiazole moiety of thiamine pyrophosphate; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
  0.544
moaD
Molybdopterin synthase sulfur carrier subunit; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
  0.514
ANC46317.1
Thiamine biosynthesis protein ThiS; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
  0.441
iscS_1
Saccharopine dehydrogenase; Frameshifted; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
 0.407
iscS_2
Cysteine desulfurase IscS; Master enzyme that delivers sulfur to a number of partners involved in Fe-S cluster assembly, tRNA modification or cofactor biosynthesis. Catalyzes the removal of elemental sulfur atoms from cysteine to produce alanine. Functions as a sulfur delivery protein for Fe-S cluster synthesis onto IscU, an Fe-S scaffold assembly protein, as well as other S acceptor proteins.
    
 0.407
iscS_3
Cysteine desulfurase IscS; Master enzyme that delivers sulfur to a number of partners involved in Fe-S cluster assembly, tRNA modification or cofactor biosynthesis. Catalyzes the removal of elemental sulfur atoms from cysteine to produce alanine. Functions as a sulfur delivery protein for Fe-S cluster synthesis onto IscU, an Fe-S scaffold assembly protein, as well as other S acceptor proteins.
    
 0.407
Your Current Organism:
Pandoraea pnomenusa
NCBI taxonomy Id: 93220
Other names: ATCC BAA-63, ATCC:BAA:63, CCM 4978, CCUG 38742, CIP 106626, DSM 16536, LMG 18087, LMG:18087, NCTC 13160, P. pnomenusa, Pandoraea pnomenusa Coenye et al. 2000, Pandoraea sp. RB-44
Server load: low (18%) [HD]