STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ENSMFAP00000011619Uncharacterized protein. (114 aa)    
Predicted Functional Partners:
NDUFS7
NADH:ubiquinone oxidoreductase core subunit S7; Belongs to the complex I 20 kDa subunit family.
   
 0.998
NDUFS8
NADH dehydrogenase [ubiquinone] iron-sulfur protein 8, mitochondrial; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity).
   
 0.998
NDUFB5
NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 5, mitochondrial; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
   
 0.998
NDUFV1
NADH dehydrogenase [ubiquinone] flavoprotein 1, mitochondrial; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity).
   
 0.998
NDUFA12
NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 12; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
   
 0.997
NDUFS6
NADH dehydrogenase [ubiquinone] iron-sulfur protein 6, mitochondrial; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
   
 0.997
NDUFA9
NADH:ubiquinone oxidoreductase subunit A9.
   
 0.996
NDUFB7
NADH:ubiquinone oxidoreductase subunit B7.
   
 0.996
NDUFS3
NADH:ubiquinone oxidoreductase core subunit S3; Belongs to the complex I 30 kDa subunit family.
   
 0.995
NDUFB6
NADH:ubiquinone oxidoreductase subunit B6.
   
 0.995
Your Current Organism:
Macaca fascicularis
NCBI taxonomy Id: 9541
Other names: M. fascicularis, Macaca cynomolgus, Macaca irus, crab eating macaque, crab-eating macaque, cynomolgus macaque, cynomolgus monkey, cynomolgus monkeys, long-tailed macaque
Server load: low (28%) [HD]