STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ATP6V1B2V-type proton ATPase subunit B, brain isoform. (278 aa)    
Predicted Functional Partners:
ATP6V1D
V-type proton ATPase subunit D; Subunit of the peripheral V1 complex of vacuolar ATPase. Vacuolar ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells, thus providing most of the energy required for transport processes in the vacuolar system. May play a role in cilium biogenesis through regulation of the transport and the localization of proteins to the cilium (By similarity).
 
 0.998
ATP6V1B1
V-type proton ATPase subunit B, brain isoform; Non-catalytic subunit of the peripheral V1 complex of vacuolar ATPase. V-ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells (By similarity).
  
 
0.998
ATP6V1F
V-type proton ATPase subunit F; Subunit of the peripheral V1 complex of vacuolar ATPase essential for assembly or catalytic function. V-ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells.
  
 0.998
LAMTOR1
Ragulator complex protein LAMTOR1; As part of the Ragulator complex it is involved in amino acid sensing and activation of mTORC1, a signaling complex promoting cell growth in response to growth factors, energy levels, and amino acids. Activated by amino acids through a mechanism involving the lysosomal V- ATPase, the Ragulator functions as a guanine nucleotide exchange factor activating the small GTPases Rag. Activated Ragulator and Rag GTPases function as a scaffold recruiting mTORC1 to lysosomes where it is in turn activated. LAMTOR1 is directly responsible for anchoring the Ragulat [...]
    
 0.997
ATP6V1E1
ATP6V1E1 isoform 1.
  
 0.997
ATP6V1A
V-type proton ATPase catalytic subunit A; Catalytic subunit of the peripheral V1 complex of vacuolar ATPase. V-ATPase vacuolar ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells. In aerobic conditions, involved in intracellular iron homeostasis, thus triggering the activity of Fe(2+) prolyl hydroxylase (PHD) enzymes, and leading to HIF1A hydroxylation and subsequent proteasomal degradation. May play a role in neurite development and synaptic connectivity. Belongs to the ATPase alpha/beta chains family.
 
0.997
ATP6V1H
V-type proton ATPase subunit H; Subunit of the peripheral V1 complex of vacuolar ATPase. Subunit H activates ATPase activity of the enzyme and couples ATPase activity to proton flow. Vacuolar ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells, thus providing most of the energy required for transport processes in the vacuolar system.
   
 0.996
ATP6V0D1
V-type proton ATPase subunit d 1; Subunit of the integral membrane V0 complex of vacuolar ATPase. Vacuolar ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells, thus providing most of the energy required for transport processes in the vacuolar system. May play a role in coupling of proton transport and ATP hydrolysis. May play a role in cilium biogenesis through regulation of the transport and the localization of proteins to the cilium (By similarity). In aerobic conditions, involved in intracellular iron homeostasis, thus triggering the acti [...]
  
 0.995
ATP6V0C
V-type H+-transporting ATPase 16kDa proteolipid subunit.
  
 0.993
ATP6V1E2
ATPase H+ transporting V1 subunit E2.
  
 0.990
Your Current Organism:
Pongo abelii
NCBI taxonomy Id: 9601
Other names: Orang-utan, Orangutan, P. abelii, Pongo pygmaeus abeli, Pongo pygmaeus abelii, Sumatran orangutan, orang utan
Server load: low (36%) [HD]