STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
DHODHDihydroorotate dehydrogenase (quinone), mitochondrial; Catalyzes the conversion of dihydroorotate to orotate with quinone as electron acceptor. (395 aa)    
Predicted Functional Partners:
UMPS
Orotidine 5'-phosphate decarboxylase; Uridine monophosphate synthetase; In the C-terminal section; belongs to the OMP decarboxylase family.
  
 0.999
CAD
Glutamine-dependent carbamoyl-phosphate synthase; This protein is a 'fusion' protein encoding four enzymatic activities of the pyrimidine pathway (GATase, CPSase, ATCase and DHOase); In the central section; belongs to the metallo-dependent hydrolases superfamily. DHOase family. CAD subfamily.
  
 0.994
GMPS
GMP synthase [glutamine-hydrolyzing]; Involved in the de novo synthesis of guanine nucleotides which are not only essential for DNA and RNA synthesis, but also provide GTP, which is involved in a number of cellular processes important for cell division.
  
 0.940
CYB5R4
Cytochrome b5 reductase 4; NADH-cytochrome b5 reductase involved in endoplasmic reticulum stress response pathway. Plays a critical role in protecting pancreatic beta-cells against oxidant stress, possibly by protecting the cell from excess buildup of reactive oxygen species (ROS). Reduces a variety of substrates in vitro, such as cytochrome c, feericyanide and methemoglobin.
  
 0.935
CYB5RL
NADH-cytochrome b5 reductase-like; NADH-cytochrome b5 reductases are involved in desaturation and elongation of fatty acids, cholesterol biosynthesis, drug metabolism, and, in erythrocyte, methemoglobin reduction. Belongs to the flavoprotein pyridine nucleotide cytochrome reductase family.
  
 0.928
CYB5R1
NADH-cytochrome b5 reductase 1; NADH-cytochrome b5 reductases are involved in desaturation and elongation of fatty acids, cholesterol biosynthesis, drug metabolism, and, in erythrocyte, methemoglobin reduction. Belongs to the flavoprotein pyridine nucleotide cytochrome reductase family.
  
 0.923
CYB5R2
NADH-cytochrome b5 reductase 2; NADH-cytochrome b5 reductases are involved in desaturation and elongation of fatty acids, cholesterol biosynthesis, drug metabolism, and, in erythrocyte, methemoglobin reduction (By similarity). Responsible for NADH-dependent lucigenin chemiluminescence in spermatozoa by reducing both lucigenin and 2-[4-iodophenyl]-3-[4- nitrophenyl]-5-[2,4-disulfophenyl]-2H tetrazolium monosodium salt (WST- 1); Belongs to the flavoprotein pyridine nucleotide cytochrome reductase family.
  
 0.918
CYB5R3
NADH-cytochrome b5 reductase 3 membrane-bound form; Desaturation and elongation of fatty acids, cholesterol biosynthesis, drug metabolism, and, in erythrocyte, methemoglobin reduction.
  
 0.912
DHFR2
Dihydrofolate reductase 2, mitochondrial; Key enzyme in folate metabolism. Contributes to the de novo mitochondrial thymidylate biosynthesis pathway. Required to prevent uracil accumulation in mtDNA. Binds its own mRNA and that of DHFR.
   
  
 0.910
DHFR
Dihydrofolate reductase; Key enzyme in folate metabolism. Contributes to the de novo mitochondrial thymidylate biosynthesis pathway. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis. Binds its own mRNA and that of DHFR2.
   
  
 0.888
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, human, man
Server load: medium (64%) [HD]